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Spin currents in semiconductors: Redefinition and counterexample
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We show that effective Hamiltonians in solids lead to specific problems when dealing with spin-orbit interaction.
We prove that the usual construction, where the velocity operator is simply deduced from the velocity calculated
using the Hamilton relation, has a restricted validity and that there is an absolute necessity to modify the standard
current-tensor definition. We derive proper symmetrized expressions in the case of a Hamiltonian which has
linear and cubic dependence versus momentum components.
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The concept of current is of fundamental importance
in physics as it governs energy, particle, charge, and spin
conservation equations. More specifically, the spin-current
(SC) concept is crucial for spintronics. However, its definition
in a medium where spin-orbit interaction (SOI) is present
remains a subtle point, which gives rise to intense discussions
and sometimes epistemological controversies.1–4 Let us start
from the general form of the Hamiltonian which includes SOI,
in the absence of magnetic field,

Ĥ = p̂2

2m
+ V + h̄

4m2c2
(∇V × p̂) · σ̂ , (1)

with the usual notations. SOI adds linear p̂ terms to the
quadratic kinetic energy so that considering Hamiltonians
which have a second-order polynomial p̂ expansion might
appear to be a good way to study SOI-related phenomena.
In (ferromagnetic) metals, the situation is involved because
the electronic structure at the Fermi level is intricate. Semi-
conductor physics plays a special role in testing the concept
of SC in solids because it can provide pure illustrations
of quantum mechanics, close to atomic physics, where the
whole information of a system can be—often analytically—
obtained (e.g., the wave functions and energy spectrum). In
two-dimensional (2D) electron gases, the Rashba Hamiltonian,
which adds linear terms to the usual quadratic terms, definitely
appears to be a paradigm of spin-orbit coupling effects.
In the abstract of a 2003 paper, entitled “Spin currents in
thermodynamics equilibrium: The challenge of discerning
transport currents, ”Rashba1 states that there are “problems
inherent in the theory of transport spin currents driven by
external fields” and then starts from the definition which is
today commonly accepted: “I use in what follows the standard
and physically appealing definition of the SC tensor Jij .”

In a 2008 paper, Sablikov et al.2 reach a similar conclusion.
In a detailed analysis relying on thermokinetics arguments,
Sun et al.3 write that “suggestions have been made in previous
papers that one needs to modify the conventional definition
of the spin current.” But in the framework of their discussion,
focused on Rashba SOI, they conclude that “there is no need to
modify this conventional definition.” To summarize, today the
standard definition is to write the (6 × 6) spin-current tensor

as the symmetrized dyadic product σ̂ v̂t where the velocity
operator v̂ is defined from the Hamilton relation

Ĵ = 1

2
(̂vσ̂ t + σ̂ v̂t ) with v̂ = ∂Ĥ

∂p
, (2)

where Ĥ is the relevant Hamiltonian. The conceptual difficulty
in current definitions is of a general nature and extends to a
wide range of physical systems. This can be explained as
follows. It is convenient to express the continuity equation for
the density ρ of a physical quantity by introducing a current J
and a source term G,

∂ρ

∂t
= −∇ · J + G. (3)

The point is that the source term is not well defined. It
can be modified—an arbitrary part of it can be incorporated
in the divergence term—accordingly changing the current
definition so that only the current-source couple has a physical
meaning.4,5 This is analogous to a gauge transformation where
different vector- and scalar-potential couples account for a
unique physical reality. In spintronics, the source term is
referred to as the “spin-transfer torque.” Then, the problem of
defining both current and source terms in a conservation law is
an old problem which was discussed in depth by Feynman in
his lecture on electromagnetic-field energy current6 and also
by De Groot and Mazure in the context of nonequilibrium
thermodynamics, for which, however, the second law of
thermodynamics provides additional conditions allowing the
currents to be uniquely defined.7 Even though the argument
cannot be used as such in the case of (possibly nondissipative,
permanent) quantum currents, there are situations where
the equilibrium or steady-state regimes impose boundary
conditions that lead to unambiguous identification.

In crystalline solids, the potential V that appears in Eq. (1)
is a periodic potential. Through the Bloch theorem, a free-
electron-like Hamiltonian can be recovered by the introduction
of an effective mass. Then, the wave-vector (k) dispersion of
the energy bands takes the form of a polynomial expression
which includes power terms higher than 2. From this dispersion
law, an effective Hamiltonian can be built according to the
envelope-function theory,8 substituting k with p̂/h̄. Dealing
with such an effective Hamiltonian enables working with
eigenstates described by plane waves but leads to special
features because SOI possibly yields momentum terms with
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a power higher than 2. The use of effective Hamiltonians is
crucial when studying nonhomogeneous media (e.g., quantum
wells or superlattices) because it is a smart way to take into
account the boundary conditions. Therefore, in the present
Brief Report, we consider the effective Hamiltonian given by
the third-order expansion

Ĥ = H (1) + H (2) + H (3) + U , (4)

where H (1) = ∑
j aj p̂j , H (2) = ∑

j,k bjkp̂j p̂k , and H (3) =∑
j,k,l cjkl p̂j p̂kp̂l . The p̂j , p̂k , and p̂l operators are the p̂

components; aj , bjk , and cjkl (j , k, and l refer to Cartesian
coordinates) are (2 × 2) Hermitian matrices operating in the
spin space, invariant under permutation of j , k, and l. The
additional perturbing potential U is real.9 The linear (first)
terms describe the Rashba Hamiltonian, the quadratic (second)
terms correspond to the usual kinetic-energy contribution,
the cubic (third) terms describe the D’yakonov-Perel’ (DP)
Hamiltonian10 (Dresselhaus11 term). Let us point out that
the Rashba and DP Hamiltonians are deeply different. Only
with some approximations or along special crystallographic
directions does the DP Hamiltonian reduce to a form which
is a unitary equivalent to the Rashba one.12 This arises in
the situation considered in Ref. 13. Let us emphasize that the
third-order expansion of the Hamiltonian covers almost all
practical situations in semiconductors, although higher-order
terms could be incorporated if needed, without altering the
physics discussed in this paper. It was introduced in Ref. 14
to analyze one-dimensional tunneling through evanescent
states whose spin properties are determined by the DP field.
This calculation is utterly important because it proves that a
redefinition of the total probability current is mandatory.

Hereafter, we give a procedure to derive the SC expression
relevant to the Hamiltonian given in Eq. (4). A key conclusion
is that the standard expression of the SC tensor is correct
up to the quadratic terms, which includes Rashba and Klein
Hamiltonians,1,15 but that, concerning the DP Hamiltonian, a
generalized expression has to be used instead. Making use of
the results obtained in Ref. 14, we are able to illustrate simply
our findings concerning the SC on the concrete case of electron
tunneling through GaAs barriers.

First, let us consider the total probability current—
associated with particle conservation—J[ψ] originating from
the wave function ψ . It will be useful to write |ψ) = ψ↑|↑〉 +
ψ↓|↓〉 with ψs = ψs(r), s =↑ or ↓, (ψ | = |ψ)†, and also
(ψ | ϕ) = ψ∗

↑ϕ↑ + ψ∗
↓ϕ↓. It has been shown in Ref. 14 that

the j component of J[ψ] is

Jj [ψ] = (ψ |ajψ) +
∑

k

[(ψ |bjkp̂kψ) + c.c.]

+
∑
k,l

[3(p̂kψ |cjklp̂lψ) + p̂kp̂l(ψ |cjklψ)], (5)

where c.c. means the complex conjugate. The structure of this
current can be made more “intuitive” by writing J[ψ(r0)] =
〈ψ |̂J(r0)|ψ〉, where the j component of the (2 × 2) Hermitian
current operator16 Ĵ(r0)—acting on a spinor—is defined as

Ĵj (r0) = δr0aj + (
δr0 p̂ + p̂δr0

) · bj

+ (
δr0 p̂̂pt + p̂δr0 p̂t + p̂̂pt δr0

)
: c

j
. (6)

In this expression, δr0 = δ(r − r0) is the Dirac distribution
and the notation “ : ” refers to the double-dot product
defined by M1 : M2 = Trr(M1M2), where M1 and M2 are
arbitrary matrices and Trr is the partial trace calculated over
only the space states, e.g., p̂̂pt : c

j
= ∑

kl pkplcjlk . In the

space states, the (2 × 2) Hermitian spin matrix aj has to
be viewed as a scalar operator, bj as a vectorial operator of
components (bj )k = bjk , and c

j
as a second-order symmetric

tensorial operator of components [c
j
]kl = cjkl . This current

expression differs from the standard one [Eq. (2)]. Indeed, the
j component of the standard velocity operator is v̂j = aj+
Trr[2bj p̂t + 3c

j
(̂p̂pt )].14 The simplest use of v̂j to define

Ĵj (r0) would lead to an equation similar to Eq. (6), where
the last term is substituted with (3/2)(δr0 p̂̂pt + p̂̂pt δr0 ) : c

j
.

The SC is the magnetic current originating from the
imbalance between the up- and down- spin contributions.
Then, it is useful to define separately the up- and down- spin
currents and, for that purpose, let us refer to the orthogonal
projectors on the basis vectors of the spin space (Hermitian
operators commuting with p̂) as πs , so that |ψs) = ψs |s〉 =
πs |ψ). Then, it is straightforward to calculate the probability
currents associated with the up- and down-spin components of
the wave function

Ju,j [ψs] = (ψ | πsajπs ψ) +
∑

k

[(ψ |πsbjkπs p̂kψ) + c.c.]

+
∑
k,l

[3(p̂kψ |πscjklπsp̂lψ)

+p̂kp̂l(ψ |πscjklπsψ)], (7)

where u is the spin-quantization direction. Any matrix M

can be expanded as M = π↑Mπ↑ + π↓Mπ↓ + (π↑Mπ↓ +
π↓Mπ↑). Therefore Ju,j [ψ↑] + Ju,j [ψ↓] is, in general, not
equal to the total probability current Ju,j [ψ], because cross
terms involve (π↑Mπ↓ + π↓Mπ↑). If M is diagonal, the cross
terms vanish. This is the case when ↑ and ↓ are eigenstates
of Ĥ and in this special case, we find Ju,j [ψ] = Ju,j [ψ↑] +
Ju,j [ψ↓]. However, when the quantization direction does not
correspond to eigenstates, the meaning of these currents is not
obvious. This arises if transport occurs in coupled up- and
down-spin channels, and in particular for the DP field in the
case of evanescent states when the internal field is not collinear
to any real direction.14

One can properly define the up- and down-spin currents as
follows: The principle is to write the conservation equation for
the s-spin density ρs = |ψs |2 by projecting the Schrödinger
equation on |ψs), step by step following the calculation given
in Ref. 14, Appendix B. For instance, let us focus on the linear
terms in the Hamiltonian: Then ∂tρs = −∑

j ∂j (ψ |πsajψ)

− 1
ih̄

∑
j (pjψ |[πs, aj ]ψ), with ∂j = ∂/∂xj , xj = x, y, z. In

general, neither the first term nor the second is real although
their sum is. Adding their complex conjugates allows one to
construct two real terms: the first one is the divergence of
a real quantity that we define as the probability current; we
take the second term as the source. This choice is consistent
because, if the spin is an eigenstate of the first-order terms in
the Hamiltonian (i.e., the spin lies parallel to the corresponding
internal field, and aj is diagonal and commutes with πs), no
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spin precession occurs so that the source term must vanish.
Then, the source is naturally related to [aj ,πs]. Moreover,
we will see that this construction leads to the widely used
expressions of the probability and spin currents up to first order
(i.e., related to H (1) and H (2)). The same goes for the quadratic
and cubic terms. Eventually, referring to anticommutator as {},
we obtain

2J s
u,j [ψ] = (ψ |{πs,aj }ψ) +

∑
k

[(ψ |{πs,bjk}p̂kψ) + c.c.]

+
∑
k,l

[3(p̂kψ |{πs,cjkl}p̂lψ)

+p̂kp̂l(ψ |{πs,cjkl}ψ)], (8)

G(n)
u,s[ψ] = 1

h̄
Im(ψ |[πs,H

(n)]|ψ). (9)

G
(n)
u,s[ψ], with n = 1 or 3, refers to the source contribution

originating from the linear and cubic terms in the Hamiltonian.
To comply with Kramers symmetry, the even-order terms
cannot induce any spin splitting: bjk are diagonal matrices
and G

(2)
u,s[ψ] = 0. Now, we have G

(n)
u,↑[ψ] + G

(n)
u,↓[ψ] = 0

and Ju[ψ] = J↑
u[ψ] + J↓

u[ψ]. The SC δJu,j [ψ] is the differ-
ence between the up- and down-spin currents, δJu,j [ψ] =
J

↑
u,j [ψ] − J

↓
u,j [ψ], and the corresponding source terms are

δGu[ψ] = ∑
n(G(n)

u,↑[ψ] − G
(n)
u,↓[ψ]). We obtain

2δJu,j [ψ] = (ψ |{σu,aj }ψ)

+
∑

k

[(ψ |{σu,bjk}p̂kψ) + c.c.]

+
∑
k,l

[3(p̂kψ |{σu,cjkl}p̂lψ)

+p̂kp̂l(ψ |{σu,cjkl}ψ)], (10)

δGu[ψ] = 1

h̄
Im(ψ |[σu,Ĥ ]|ψ), (11)

where we have used the relation σu = π↑ − π↓. This consti-
tutes a natural extension of the standard definition.17 Starting
from the expression of the j component of the total probability
current J[ψ] [Eq. (5)], the SC is straightforwardly obtained
by the substitution aj → a

′
j = (1/2){σu,aj }, bjk → b

′
jk =

(1/2){σu,bjk}, and cjkl → c
′
jkl = (1/2){σu,cjkl}. These oper-

ators are still Hermitian matrices, invariant under permutation
of the subscripts. Thus, the same calculation allows one to
write the SC operator in a form similar to Eq. (6). In the case
of Rashba splitting, it can easily be checked that these SC and
source-term definitions reduce to the standard formulas.4 The
situation is drastically different in the presence of the DP field.

Let us illustrate the importance of the preceding redefini-
tions in the particular case of gallium arsenide, for important
technological directions. Near the conduction-band edge, the
energy is written10

E(k) = γck
2 + γχ · σ̂ , (12)

where χ is the DP field, with components kx(k2
y − k2

z ), ky(k2
z −

k2
x), and kz(k2

x − k2
y), referring to the cubic crystal axes; γc (γ )

is a parameter related to the effective mass (DP-field strength).

Along the [110] direction (normal to the cleavage face),
taken as the z′ axis (unit vector z′), unidimensional transport
can occur for both propagating and evanescent waves.14

Equation (12) yields the effective Hamiltonian

ĤDP = γc

h̄2 p̂2
z′ + γ

h̄3 p̂3
z′e110 · σ̂ , (13)

where e110 is the unit vector along [110], the DP-field direction.
It is essential to observe that the evanescent eigenstates of
Eq. (13) are pure spin states associated with complex wave
vectors. As previously pointed out, in that very case, the s-spin
current coincides with the probability current carried by ψs .
At a given energy, there exist four degenerate states, (k, ↑)
and (k∗, ↑) for up spin with k = (iK + Q)z′, where K and Q

are real, and their Kramers conjugates for the down spin. As
the spin is in an eigenstate, no evolution is expected, no torque
will be exerted on it, and no source term should be present. In
a tunneling experiment along this direction, transport will take
place in two independent channels. Nevertheless, as shown in
Ref. 14, up and down spins undergo a different phase shift,
which restores spin precession around the complex field. If we
consider the state [(iK + Q)z′, ↑], the total probability current
(charge current) is equal to the up-spin current, which is also
the SC. This current has to be conserved as neither charges nor
particles can be created inside the material. Let us check this
basic conservation rule with the standard SC expression given
in Eq. (2). A simple calculation yields

Ju,z′ [ψ] = δJu,z′ [ψ] = −4
γc

h̄
Q|ψ↑|2, (14)

where we have used the relation K2 	 (4γc/γ )Q [Ref. 14,
Eq. (A6)]. Then, we obtain a contradictory result: Ju,z[ψ] is
nonzero and not even divergence-free. This would imply the
existence of a nonzero source term which is not physically
acceptable and must be excluded. Even a constant current
would be nonphysical as the same current would be associated
with a vanishingly small wave function for z′ → +∞ and
with a diverging wave function for z′ → −∞. In that case, the
SC and the total probability current have to be equal to zero.
Contrary to the conclusion given in Ref. 4, there is a need
to modify the conventional spin-current definition. Instead,
the correct expression for the current [Eq. (7)] yields a zero
probability current for an evanescent state along a real-energy
line [Ref. 14, Eq. (2.15) and after], as in the case of the
usual evanescent wave. It has to be emphasized that a wrong
definition of the spin currents implies a wrong definition of
the torques. In this tunneling example, if the free-electron
probability current were used instead of the correct expression,
spurious spin torques would be found. These spurious torques
could be “intuitively” related to electron spin precession
around the complex DP field. This proves once again that
words like “intuitive” or “physical” may be confusing as they
rely on quasiclassical pictures.

Finally, let us apply the general relations for the currents
and source terms [Eqs. (8)–(10)] in the case of wave functions
involving wave vectors with ky = 0. Such solutions are
important, in particular because some of them correspond to
off-normal tunneling on a [001]-oriented barrier (the GaAs
technological surface).14 Then, the SC components originating
from the cubic terms in the Hamiltonian take the simple
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form (h̄3/γ )δJz,x[ψ] = 2 Re(p̂xψ |p̂zψ) + (2/3)pxpz|ψ |2,
δJz,y[ψ] = 0, and (h̄3/γ )δJz,z[ψ] = |p̂xψ |2 + (1/3)p2

x |ψ |2.
There are simple source terms associated with these SCs:
G

(3)
z,s[ψ] = (s/h̄) Re(p̂xp̂

2
zψ |σyψ), where s = 1 (−1) for

up spin (down spin). By comparison, the standard SC
operator [after Eq. (2)] would yield x and z components
respectively increased by (1/3)pxpz|ψ |2 and (1/6)p2

x |ψ |2.
The discrepancy in the terms involving |ψ |2 makes evident
why evanescent waves, with a rapidly varying modulus,
constitute a sensitive probe of the SC properties, whereas
propagating plane waves are not.

These results highlight the peculiarities of effective Hamil-
tonians in crystalline solids. A central achievement is that,
up to the second power in the momentum expansion of
the Hamiltonian, which includes Rashba Hamiltonians, the

commonly accepted SC expression is valid but that, when
third-power terms are taken into account as in the DP
Hamiltonians along some crystallographic directions, the
situation drastically changes. The study of tunneling currents
in noncentrosymmetric semiconductors provides one with
a unique capability to test the concepts of current. The
expression of the SC derived in the present Brief Report,
after properly taking into account SOI, paves the way to spin-
orbit engineering in the ongoing development of spintronics
devices.

We are grateful to Emmanuel I. Rashba for his interest.
We thank Travis Wade and Federico Bottegoni for a critical
reading of the manuscript.

*Henri-Jean.Drouhin@polytechnique.edu
1E. I. Rashba, Phys. Rev. B 68, 241315(R) (2003).
2V. A. Sablikov, A. A. Sukhanov, and Y. Ya. Tkach, Phys. Rev. B
78, 153302 (2008).

3Q.-F. Sun, X. C. Xie, and J. Wang, Phys. Rev. B 77, 035327 (2008);
see Sec. VI.

4E. B. Sonin, 76, 033306 (2007); 77, 039901(E) (2008).
5J. Shi, P. Zhang, D. Xiao, and Q. Niu, Phys. Rev. Lett. 96, 076604
(2006).

6R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lec-
tures on Physics, Mainly Electromagnetism and Matter (Addison-
Wesley, Reading, MA, 1966), Vol. 2, Chap. 27.

7S. R. De Groot and P. Mazure, Non-Equilibrium Thermodynamics
(Dover, Mineola, NY, 1984), p. 25.

8G. Bastard, Wave Mechanics Applied to Semiconductor Het-
erostructures (Les Editions de Physique, Les Ulis, France, 1996).

9U has not the crystal periodicity; the crystal potential V has already
been taken into account in the aj , bjk , and cjkl expressions. For
example U describes a potential barrier.

10M. D’yakonov and V. I. Perel’, Zh. Eksp. Teor. Fiz. 60, 1954 (1971)
[Sov. Phys. JETP 33, 1053 (1971)].

11G. Dresselhaus, Phys. Rev. 100, 580 (1955).
12E. I. Rashba and V. I. Sheka, in Landau Level Spectroscopy, edited

by G. Landwehr and E. I. Rashba (Elsevier, Amsterdam, 1991),
p. 178.

13V. I. Perel’, S. A. Tarasenko, I. N. Yassievich, S. D. Ganichev,
V. V. Bel’kov, and W. Prettl, Phys. Rev. B 67, 201304(R)
(2003).

14T. L. Hoai Nguyen, H.-J. Drouhin, J.-E. Wegrowe, and G. Fishman,
Phys. Rev. B 79, 165204 (2009).

15M. I. Katsnelson, K. S. Novoselov, and A. K. Geim, Nat. Phys. 2,
620 (2006).

16A. Messiah, Quantum Mechanics (Dover, Mineola, NY, 1999),
Chap. X, p. 372.

17From the Ehrenfest theorem, the average value of the source
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