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Abstract: We show that self-induced oscillations at frequencies above
GHz and with a high spectral purity can be obtained in a silicon photonic
crystal nanocavity under optical pumping. This self-pulsing results from
the interplay between the nonlinear response of the cavity and the photon
cavity lifetime. We provide a model to analyze the mechanisms governing
the onset of self-pulsing, the amplitudes of both fundamental and harmonic
oscillations and their dependences versus input power and oscillation
frequency. Theoretically, oscillations at frequencies higher than 50 GHz
could be achieved in this system.
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Cavities made in photonic crystals are characterized by their very small modal volume V of
the order of (λ/n)3 and their high quality factor Q [1–3]. Because the strength of light-matter
interactions in the cavity depends on the ratio Q/V, the field of nonlinear photonic crystals has
rapidly emerged for photonic applications and all-optical signal processing [4]. Devices with
small footprint and very low switching energies are expected thanks to the enhanced non-linear
response. Several nonlinear phenomena like two-photon absorption (TPA), third-harmonic gen-
eration, four-wave mixing, optical bistability, stimulated Raman scattering have been conse-
quently demonstrated in photonic crystals by different groups [5–9]. One very attractive feature
of nonlinear dynamics is its application to microwave photonics. Microwave photonics aims to
provide functions that are complex to obtain in the radio-frequency domain [10]. In particular,
optical generation and distribution of microwave signals in a very compact system are key tech-
niques. It has been theoretically shown that self-pulsation at high frequencies (up to 100 GHz)
could be obtained in resonant systems like photonic crystal cavities in the presence of strong
nonlinearities [11]. Self-pulsing is an intrinsic property of nonlinear systems characterized by
delay-differential dynamics [12] and results from the balance between the nonlinear response
and the photon cavity lifetime. One key feature of optical microcavities is that the photon life-
time can be in the same range as the carrier lifetime. In this case, self-pulsing can be triggered
by the interaction between free-carrier dispersion and TPA [11, 13]. TPA creates a local carrier
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Fig. 1. (a) (top): schematic view of the photonic crystal with the suspended access waveg-
uides and nanotethers. The input light pulse intensity and the oscillating output are also
drawn schematically. Bottom: scanning electron microscope view of the entrance of the
photonic crystal waveguide (left) and view of an access waveguide (right). (b) Simulated
steady-state output power of the cavity as a function of the input power for different detun-
ings of the pump. For the curve at a detuning of -20 pm, the zone of bistability is between
P1 = 0.284 mW and P2 = 0.549 mW. Self-pulsation can be observed for input powers larger
than P3 = 1.5 mW, above the zone of bistability. The measurement reported in Fig. 3 (b)
was performed for an input power P4 = 2 mW.

plasma that shifts the cavity resonance because of the photo-induced refractive index variation.
The achievement of self-sustained oscillations requires a positive feedback mechanism. The
latter is provided by the dynamical tuning of the cavity resonance as a function of the carrier
density that modulates the stored energy in the cavity. This self-pulsing effect can be obtained at
GHz frequencies and differs therefore significantly from the one created by the competition of
thermal and free-carrier effects, which is limited to MHz frequencies [14, 15]. Here, we exper-
imentally show that non-attenuated self-induced spontaneous oscillations can occur in silicon
photonic crystal (PhC) nanocavities at frequencies near 3 GHz, a value much higher than those
that have been recently demonstrated in silicon microring resonators [16]. Despite the fact that
the oscillations originate from nonlinear effects, the observed oscillations in silicon PhC cavi-
ties are almost perfectly sinusoidal and this counterintuitive property is precisely explained by
the analytical model presented in this letter.

The membrane photonic crystal nanocavity studied here is a modulated-width waveguide
cavity following the design in [17]. Light was injected in the cavity and collected with lensed
fibers through ridge-type access waveguides suspended by nano-tethers as in [18] (see Fig.
1(a)). A direct coupling between cavity and access waveguides is implemented as illustrated
in [19]. The measured coupling loss from the lensed fiber to each access waveguide is 8 dB and
the input and output powers given afterward are those at the entrance and exit of the photonic
crystal. A continuous tunable external cavity laser is modulated by a Mach-Zehnder modulator
to generate 10-ns duration pulses with a repetion rate of 100 kHz in order to minimize thermal
effects. A 6-GHz bandwidth InGaAs photodiode is used to detected the output signal. In the
present experiment, the peak resonance of the studied cavity is at 1585.638 nm, its quality
factor Q is around 130000 and the transmission at the resonance is Tmax =41% between the
entrance and exit of the photonic crystal. Figure 1(b) shows the calculated output power as a
function of the input power for different detunings between the laser and the cavity resonance.
We can clearly observe the cavity nonlinear behavior as the power is increased. Bistability is
obtained when the pump has a negative detuning as compared to the resonance wavelength,
i.e. when the laser wavelength is shorter than the cavity resonance wavelength. As explained
in [11] and in appendix 2, self-pulsing can be expected for operating points on the high-energy
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branch that characterizes the output power. The occurrence of spontaneous oscillations is very
dependent on the carrier recombination time and on a fine tuning of different parameters that
can be chosen based on the modeling of the silicon nanocavity.

The equations describing the temporal behavior of the cavity are [11, 20, 21]:

dA
dt

=− A
2τ

+ iΔωA− γFCA N
Ve f f

A− γTPA|A|2A
2h̄ω

+

√
Pin

τin
(1)

dN
dt

=− N
τ f c

+
1
2

γTPA |A|4
(h̄ω)2 (2)

where A is the complex amplitude of the electrical field of the confined mode in the cav-
ity (with E = |A|2 the mode energy) and N is the number of free-carriers. The first term on
the right-hand side of Eq. (1), −A/(2τ) represents the damping of the electrical field due to
intrinsic linear losses, τ = Q/ω0, being the photon lifetime in the cavity. This field decay is
compensated by the continuous injection of light into the cavity that is taken into account by
the last term

√
Pin/τin, τin = 2τ/

√
Tmax being the photon injection time and Tmax the trans-

mission maximum at low input power. The interplay between the second term, iΔωA, and the
third term, −γFCA N

Ve f f
A, is mainly responsible for the oscillations of the cavity: Δω = ω −ω0

represents the detuning between the input laser frequency ω/(2π) and the cavity resonance
frequency ω0/(2π). −γFCA N

Ve f f
A, where γFCA is a complex number, represents the effect of

free-carrier induced absorption and dispersion, and Ve f f is the cavity effective volume over
which the photo-generated free-carriers spread (see appendix 1 Free-carrier dispersion, absorp-
tion and generation). Here, we calculated γFCA = 5.83× 10−14 + 1.7× 10−12i m3 s-1 using
three-dimensional finite difference in time domain (3D-FDTD) simulation.

The fourth term in Eq. (1) represents the effect of two-photon absorption. For the power
considered here, this term has a negligible effect on the cavity field decay but its counterpart

in Eq. (2), 1
2 γTPA |A|4

(h̄ω)2 , is crucial. Indeed, it represents the unique source term in the equation

for free-carriers, −1/τ f c being the effective decay rate of free carriers. From 3D-FDTD, we
deduced γTPA = 1.63×104 s-1 for the PhC cavity.

For the input power we used experimentally (P = 2 mW), the linear absorption that exists in
structured silicon [22, 23] is negligible as compared to TPA. For the same reason, we did not
take into account the dispersion created by Kerr effect since it is negligible when compared to
the dispersion created by free-carriers [24].

Classically, this system of differential equations can be solved by first looking for steady state
solutions and then by linearizing for small variations around these steady-state solutions (see
Refs. [11, 13, 16] and appendix 2 Solving the equations: steady state and small perturbations).
Steady-state solutions of the different variables of the system can be expressed as a function of
the energy E = |A|2 that appears as a root of a five-degree polynomial. As mentioned before,
self-pulsing only happens for a high value of E, i.e. on the upper energy-branch and beyond the
bistability zone. The eigenvalues of the matrix associated to this linearized system around the
steady-state solutions characterize the cavity dynamics. Self-induced oscillations occur when
the system is characterized by a Hopf bifurcation which happens when a pair of conjugate
eigenvalues αr ± iΩ goes from the left half complex plane to the right one as a parameter of the
system is varied, i.e. when the real part of these eigenvalues becomes positive. The oscillations
are non-attenuated for αr > 0, corresponding to an equivalent gain and their period is 2π/Ω.

The set of parameters where self-pulsing occurs is illustrated in Fig. 2. Figure 2(a) shows
that, for a cavity with Q=130000, non-attenuated oscillations can only be obtained for a free-
carrier lifetime smaller than 0.4 ns and a cavity effective volume smaller than 5.5 μm3. Figure
2(b) shows the dependence of the oscillation period for a free-carrier lifetime of 0.2 ns and an
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Fig. 2. (a) Period of the oscillations as a function of the cavity effective volume Ve f f and
the free-carrier lifetime, for a cavity with a quality factor Q=130000, a detuning of -20 pm
and an input power P4 = 2 mW. The oscillations are non-attenuated in the zone of positive
gain (inside the region defined by the black thick line). (b) Period of the oscillations as a
function of the quality factor and input power for a free-carrier lifetime of 0.2 ns and an
effective volume Ve f f = 5.25 μm3.

effective volume Ve f f = 5.25 μm3 and indicates that, in this case, self-sustained oscillations
can only be obtained for a quality factor higher than 110000. In the latter case, when we plot
the cavity energy vs. the number of free carriers, the energy follows a stable trajectory around
an equilibrium point which is characteristic of periodic oscillations (not shown).

The experiments were performed on the same cavity before and after a nitric acid surface
treatment used to modify the carrier recombination time [25] and the quality factor. Nitric acid
treatment introduces new surface states that modify the surface recombination velocity of the
free-carriers and thus decrease the effective lifetime of the carriers. The silicon is also slightly
etched by the nitric acid. The geometry of the PhC is thus modified and the Q factor is slightly
increased. The experimental results are presented in Fig. 3(a) for a cavity with a quality factor
of 90000 and various detunings. In Fig. 3(a), one observes self-induced oscillations with a
period of 0.3 ns, for a laser wavelength detuned from -40 pm to -20 pm. The amplitude of
the high-frequency oscillations is strongly damped with a characteristic decay time equal to
−α−1

r ≈710 ps and the oscillations at 3.18 GHz disappear before the end of the 10-ns pulse.
This characteristic time measured at a high input power corresponds to an increase of the photon
lifetime in the cavity of one order of magnitude as compared to the photon lifetime τ =75 ps
given by the Q factor at low power. This effective lifetime increase is a consequence of free-
carrier induced nonlinearities that, in these experimental conditions, are not yet sufficient to
generate self-sustained oscillations. Similar photon lifetime increases have been observed in
active materials [26] using nonlinearities different from the one considered here.

The situation is strikingly different for the same cavity but this time with a Q factor of 130000
(i.e. after a nitric acid treatment) as shown in Fig. 3(b) for a detuning of -20 pm. Non-attenuated
oscillations with a significant contrast are observed until the end of the pulse for a laser wave-
length detuned from -30 pm to -10 pm. The oscillation frequency is 2.8 GHz, which is five times
higher than the frequency of the oscillations observed in microring resonators (0.5 GHz) [16],
notably because the quality factor of our cavity is about ten times lower than for the micror-
ing resonator, causing the cavity to react faster. This clearly demonstrates that self-sustained
self-pulsing at GHz frequencies can be achieved in silicon photonic crystal nanocavities.

We have compared the experimental results with those obtained by the modeling described
above. The only adjustable parameters were the free-carrier lifetime and the effective volume
of the cavity. Only an effective volume close to Ve f f � 5.25 μm3 could generate non-damped
self-sustained oscillations with periods around 0.2-0.3 ns (see Fig. 2(a)). This value is in close
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Fig. 3. Experimental (a and b) and simulated (c and d) output power as a function of time
for different detunings between the laser wavelength and the resonance wavelength of the
cavity. The input optical pulses have a length of 10 ns. Two types of cavities have been
investigated. The first cavity has a quality factor of 9×104 and a resonance wavelength of
1590 nm. After the cavity had been immersed in a 3:1 HNO3:H2O2 solution, the quality
factor of the cavity increased, rising from 9× 104 to 1.3× 105, and the resonance wave-
length shifted to 1585.638 nm. Measurements (a) before and (b) after the nitric acid treat-
ment. Corresponding modelings, (c) before nitric acid treatment (Q =9×104 and τ f c = 0.3
ns) and (d) after the nitric acid treatment (Q = 1.3×105 and τ f c = 0.2 ns ). In Fig. 3(a), a
parasitic extrinsic slow modulation of the signal is observed (period around 2 ns). This par-
asitic effect due to the measurement set-up was significantly suppressed for the subsequent
measurements of the cavity [Fig. 3(b)].

agreement with a simple estimate that takes into account the diffusion length of the free-carriers
in the slab (see appendix 1). A few values of the free-carrier lifetime were then tested to get the
closest fits to the oscillation frequency. It was obtained for a free-carrier lifetime τ f c = 0.3 ns
before the nitric acid surface treatment [Fig. 3(c)], and for a free-carrier lifetime τ f c = 0.2 ns
after the nitric acid surface treatment [Fig. 3(d)]. Thermal dispersion is included in the equations
(see appendix 4 thermal effects), to reproduce the increase of the output power with time as
observed in the measurements but has no impact on the oscillation frequency.

If we consider that the transmitted signal is detected by a photodetector with a 1 A/W re-
sponse and a 50 Ohm impedance circuitry, the radio-frequency power delivered by the nanocav-
ity at 2.8 GHz is 20 nW. The radio-frequency power could also be collected directly by electrical
contacts in close proximity of the photonic crystal thus eliminating the need for a fast pho-
todetector [23]. These performances compare favorably with those achieved with spin-transfer
nano-oscillators where a single spin-torque nano-oscillator emits a microwave power up to one
nW [27]. Moreover, ultra-short free-carrier lifetime as small as 12 ps has been recently demon-
strated in silicon nanowaveguides using a reverse bias and a p-i-n junction [28]. If we combine
this lifetime value with a Q=10000 cavity, operation at 50 GHz can be expected for an in-
put power of 50 mW with the advantage of generating the RF signal directly at the junction
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Fig. 4. : (a) Measured and simulated spectra of the oscillations with thermal effects for a
detuning of -20 pm. (b) Comparison between the simulated and the analytically calculated
spectra of the cavity with a continuous input power and without the thermal effects. (c)
Ratio of the fundamental harmonic amplitude E1 to the average energy in the cavity E0
as a function of the input power and the detuning (analytical expression). (d) Ratio of the
second harmonic amplitude E2 to the fundamental amplitude E1(analytical expression).

electrical outputs. In III-V system, the same lifetime parameters lead to a 100 GHz operating
frequency because of the difference of nonlinear coefficients [11]. As high-frequency operation
requires low-Q cavities, self-pulsation could be easily observed with cavities on silicon-on-
insulator with a further advantage of a better thermal management. Low-Q cavities can also
exhibit lower cavity and effective volumes which are also an advantage for the onset of self-
pulsing.

A remarkable property of the oscillations in PhC microcavity is their high spectral purity.
As can be seen in Fig. 4(a), the amplitude of the second harmonic of Pout = |A|2/τin, is 26
dB below the 2.8 GHz signal [29], as obtained after a Fourier transform of the measured and
simulated signal. To explain this behavior, we solved Eqs. (1) and (2) in the harmonic regime
(see appendix 5 solving the equations - harmonic analysis) where a solution for the stored
energy in the cavity is approximated by E � E0 +2E1 cos(Ωt +ϕ1)+2E2 cos(2Ωt +ϕ2)). An
excellent agreement is obtained between the analytical and simulated spectra [Fig. 4(b)] that
confirms the validity of the method. From the analytical expressions of the energy in the cavity,
we get the ratio of the second harmonic energy to the first one as: E2/E1 =C0 ×E1/E0, where
C0 is a function of the frequency Ω, the average energy E0 and the average number of free
carriers. For oscillations triggered by an optical input power higher than 2 mW, the expressions
of Ω, and C0, reduce to:

Ω ∼ 5

√
τ f cγTPAγFCA

i

2(h̄ω)2Ve f f
×Tmax

(
Pin

2τ

)2

− �ω
5

(3)
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and

C0 ∼ 1
Ωτ f c

×
((

1+
�ω
Ω

)
− 3γTPAτ f cE0

4h̄ω

)
(4)

where γFCA
i = Im(γFCA). These equations show that, counter intuitively, the signal is more

sinusoidal at high injection power than at low power, because the frequency of the oscillations
increases with the input power and C0 decreases as the frequency increases. This behavior is
confirmed in Fig. 4(c) and (d) that respectively represent E1/E0 and E2/E1 calculated with the
complete analytical expression as a function of the input power and the detuning. Moreover,
the amplitude of the harmonics is significantly smaller than the one observed in the microdisk
resonator in [16],for which we have found that E2/E1 =−14.6 dB and E1/E0 =−6 dB, because
the ratio E1/E0 and C0 are higher in the microdisk, this last fact being explained by the higher
frequency of the oscillations in the PhC microcavity. This higher oscillation frequency is a
direct consequence of the smaller effective volume of the PhC cavity and of the lower quality
factor which causes the system to react faster as seen in Eq. (3).

In conclusion, we have experimentally demonstrated that self-pulsing can occur at GHz fre-
quencies in photonic crystal nanocavities. This self-pulsing effect differs significantly from the
one created by thermal effects, which is limited to MHz frequencies. The operation frequency
is here controlled by the carrier lifetime and photon lifetime in the cavity. Self-pulsing in pho-
tonic crystal cavities presents the advantage of simplicity to realize ultra-compact microwave
sources with high spectral purity. As shown by the model we have developed, the remarkable
spectral purity of the self-oscillations in PhC microcavities mainly results from the small vol-
ume of the PhC cavities and cannot be observed in larger cavities such as micro-disks. These
microwave oscillators on an optical carrier are intrinsically compatible with optical delay lines
based on dispersion engineering in photonic crystal waveguides, their combination allowing
one the design of more complex architectures for microwave photonics.

Appendices:

1. Free-carrier dispersion, absorption and generation

The complex coefficient appearing in the third term of eq. (1), γFCA can be written as:

γFCA = γFCA
r + iγFCA

i =
c

2nRe f f
(σr − i

2ω
c

σi)×
(ωr

ω

)2
(5)

The real and imaginary parts are responsible for absorption and dispersion respectively.
1/Re f f represents the fraction of the optical mode in the silicon part of the cavity calcu-
lated by a three-dimensional finite difference in time domain (FDTD) simulation (Re f f = 1.1).
σr = 1.45× 10−21 m2 and σi = −5.3× 10−27 m3 are respectively the free-carrier absorption
and dispersion in silicon given at λr = 2πc/ωr = 1550 nm [21].

The coefficient appearing in the fourth term of eq. (1), γTPA, can be expressed as [20]: γTPA =

(β h̄ω
(

c
n

)2
)/VTPA, where β = 8.4× 10−12 m/W [30] is the TPA coefficient in bulk silicon,

n = 3.48 is the silicon refractive index [31], and VTPA = 4.8341×10−19 m3 is the TPA volume
calculated by three-dimensional finite-difference in time domain modeling (FDTD).

2. Solving the equations: steady state and small perturbations

To solve the cavity equations, we wrote A = |A|eiϕ and obtained two real equations from the
first complex equation, which gave us a system of three real equations:

d|A|
dt

=−|A|
2τ

− γFCA
r |A| N

Ve f f
− γTPA|A|3

2h̄ω
+ cos(ϕ)

√
Pin

τin
(6)
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dϕ
dt

=�ω − γFCA
i

N
Ve f f

− sin(ϕ)
|A|

√
Pin

τin
(7)

dN
dt

=− N
τ f c

+
1
2

γTPA |A|4
(h̄ω)2 (8)

This system only differs from the one used in Ref. [11], in the fact that it is non-normalized
and completely real. Looking for steady-state solutions (|A0|,ϕ0,N0) to these equations, we get:

N0 =
τ f cγTPA|A0|4

2(h̄ω)2 , (9)

tan(ϕ0) =
�ω − τ f cγTPAγFCA

i |A0|4
2(h̄ω)2Ve f f

1
2τ +

γTPA|A0|2
2h̄ω +

τ f cγTPAγFCA
r |A0|4

2(h̄ω)2Ve f f

, (10)

and |A0|2 is one of the roots of the five-degree polynomial:

(
|A0|
2τ

+
γTPA|A0|3

2h̄ω
+

τ f cγTPAγFCA
r |A0|5

2(h̄ω)2Ve f f
)2 +(�ω|A0|− τ f cγTPAγFCA

i |A0|5
2(h̄ω)2Ve f f

)2 − Pin

τin
= 0 (11)

Linearizing these equations for small perturbations around these steady-state solutions gives:

d
dt

⎛
⎝ δ |A|

δϕ
δN

⎞
⎠= M

⎛
⎝ δ |A|

δϕ
δN

⎞
⎠ , (12)

M =

⎛
⎜⎜⎜⎝

− 1
2τ − γFCA

r N0
Ve f f

− 3γTPA|A0|2
2h̄ω −sin(ϕ0)

√
Pin
τin

− γFCA
r |A0|
Ve f f

sin(ϕ0)
|A0|2

√
Pin
τin

− cos(ϕ0)
|A0|

√
Pin
τin

− γFCA
i

Ve f f
2γTPA|A0|3

(h̄ω)2 0 − 1
τ f c

⎞
⎟⎟⎟⎠ (13)

The eigenvalues of this matrix can be calculated as a function of |A| only and determine
the linearized system behaviour. Self-induced oscillations are possible when the matrix M is
characterized by a Hopf bifurcation, which happens when M has a pair of complex conjugate
eigenvalues αr ± iΩ which crosses the imaginary axis into the right half complex plane, i.e.
the real part of the eigenvalue becomes positive as a parameter of the system is varied. These
oscillations are non-attenuated for αr > 0, and their period is T = 2π/Ω.

In Eq. (11), for input power in the range considered here, typically Pin > 2 mW in the case of

the PhC cavity, from Eq. (11), we have
τ f cγTPAγFCA

i |A0|5
2(h̄ω)2Ve f f

∼
√

Pin
τin

+�ω|A0| because γFCA
i � γFCA

r .

Note that the detuning Δω cannot be neglected since it has still a significant influence on the
energy inside the cavity as can be seen on Fig. 1(b). One then gets the approximate expression:

|A0| ∼
5

√
2(h̄ω)2Ve f f

τ f cγTPAγFCA
i

(
Pin

τin

)1/2

×
⎛
⎝1− �ω

5
× 5

√
2(h̄ω)2Ve f f

τ f cγTPAγFCA
i

(
τin

Pin

)2
⎞
⎠

−1

(14)

. Neglecting small terms in the matrix M, we have Ω|A0| ≈
√

Pin/τin and

Ω ∼ 5

√
τ f cγTPAγFCA

i

2(h̄ω)2Ve f f
×Tmax

(
Pin

2τ

)2

− �ω
5

. (15)
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3. Estimating the cavity effective volume

The cavity effective volume for the free-carriers found experimentally (Ve f f � 5.25 μm3) is
ten times larger than the cavity volume used in Ref. [20], where it is calculated as Ve f f =

(2d)×(
√

3a)×h, with d � 1.1 μm the diffusion length of the free-carriers, h the slab thickness,
and

√
3a the distance between the air holes nearest to the center of the cavity in the orthogonal

direction (a being the photonic crystal period). Using this formula would give Ve f f = 0.32 μm3

for the investigated cavity. But this model assumes that the free-carrier diffusion stops at the air
holes, which is not the case. According to Ref. [32], the diffusion of free-carriers in a photonic
crystal is not very different from the diffusion of free-carriers in a silicon membrane without
holes. Furthermore, it assumes that the free-carriers are all created in the cavity center, but the
electric field profile of the cavity resonant mode calculated by FDTD is in fact quite large and
is included in a volume approximately equal to (8a)× (2

√
3a)×h. If we assume that the free-

carriers are created uniformly in this volume, and then diffuse in the rest of the cavity, we can
approximate the effective cavity volume for the free-carriers by Ve f f = (8a+ 2d)× (2

√
3a+

2d)× h. This formula gives Ve f f = 4.06 μm3, which is close to the value of Ve f f that was
deduced from the experimental measurements.

4. Thermal effects

If we take into account the thermal dispersion, the equations used for the modeling become [14]:

dA
dt

=− A
2τ

+ iΔωA− γFCAA
N

Ve f f
− iγT A�T − γTPA|A|2A

2h̄ω
+

√
Pin

τin
(16)

dN
dt

=− N
τ f c

+
1
2

γTPA |A|4
(h̄ω)2 (17)

(ρSiC
Si
p V T

e f f )
d�T

dt
=−�T

RT
+ h̄ω(γTPA |A|4

(h̄ω)2 +2γFCA
r

|A|2
h̄ω

N
Ve f f

) (18)

where �T is the temperature difference in the cavity generated by the input power, ρSi =
2.33 g/cm3 is the silicon density, CSi

p = 0.7 J/(g×K) is the thermal capacity of silicon, and

γT = −ω
n

dn
dT is the thermal dispersion with dn

dT = 1.86× 10−4 K−1 [14]. Two parameters are
unknown: the thermal resistance of the cavity RT and the effective cavity volume that depends
on the temperature V T

e f f . To determine these two coefficients, measurements on the cavity after
nitric acid treatment were performed again with pulses of 200 ns length. These measurements
allowed us to observe thermal oscillations with a frequency around 20 MHz. We used these
oscillations to determine approximate values of the thermal resistance and effective volume by
comparing measurements and modeling, and found RT ≈ 8× 103 K/W and V T

e f f ≈ 3× 10−18

m3, which were used in the modeling as shown in Fig. 3(c) and 3(d).

5. Solving the equations: harmonic analysis

An approximate analytical expression for the time evolution E(t) = |A(t)|2 of the energy in the
cavity can be obtained when the harmonic regime is reached for a constant input power. The
sketch of the method is the following. First, in Eq. (2), we neglected higher order harmonics

of |A|2, the stored energy in the cavity, and replaced it by the approximation |A|2 � A(2)
0 +

2A(2)
1 cos(Ωt + ϕ

A(2)
1
) with ϕ

A(2)
1

a phase term introduced for generality. We then solved the

linear first order differential equation that is obtained for N, the number of free carriers. This
expression for N and the approximate value of |A|2 are used to transform Eq. (1) in a first order,
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linear, ordinary differential equation of the form: dA/dt �−(R+F(t))A+
√

Pin/τin where R
is a constant and F(t) is a sum of two sinusoids. Solving this equation and taking the square
modulus of its solution, we get for the energy, E � E0+2E1 cos(Ωt+ϕ1)+2E2 cos(2Ωt+ϕ2))

where E0, E1, E2 depend on A(2)
0 and A(2)

1 . For consistency, this expression of E must be equal

to the first approximation we initially used in Eqs. (1) and (2), i.e. E0 = A(2)
0 , E1 = A(2)

1 with E2

negligible. Finally, solving these last two equations gives expressions for E0, E1 and E2.
The detailled calculation is given in the following. According to the experimental results, if

we neglect thermal effects, the time evolution of the energy is quasi-sinusoidal. The energy can
then be written as:

|A(t)|2 � A(2)
0 +2A(2)

1 cos(Ωt +ϕ
A(2)

1
) (19)

and |A|4 = E(t)2 � ((A(2)
0 )2 +2(A(2)

1 )2)+4A(2)
0 A(2)

1 cos(Ωt +ϕ
A(2)

1
) plus an harmonic term that

is neglected. Equation (2) becomes :

dN
dt

�− N
τ f c

+
1
2

γTPA

(h̄ω)2 [(A
(2)
0 )2 +2(A(2)

1 )2 +4A(2)
0 A(2)

1 cos(Ωt +ϕ
A(2)

1
)] (20)

Solving this linear first order differential equation, we get the following expression for

N: N(t) = N0 + 2N1 cos(Ωt + ϕN1), with N0 =
τ f cγTPA((A(2)

0 )2+2(A(2)
1 )2)

2(h̄ω)2 � τ f cγTPA(A(2)
0 )2

2(h̄ω)2 , N1 =

τ f cγTPA

2(h̄ω)2
2A(2)

0 A(2)
1

(1+iΩτ f c)
and ϕN1 a phase term. Replacing this expression of N in the Eq. (1), we get

the first order, linear, ordinary differential equation :

dA
dt

�−(R+F(t))A+

√
Pin

τin
(21)

with

R =
1

2τ
− i�ω +

γFCAN0

Ve f f
+

γTPAA(2)
0

2h̄ω
(22)

F(t) =
2γFCAN1

Ve f f
cos(Ωt +ϕN1)+

2γTPAA(2)
1

2h̄ω
cos(Ωt +ϕ

A(2)
1
) (23)

For time t � 1/R, the harmonic regime is reached and the solution of this equation is :

A(t) = Ke−Rt−∫ t
0 F(t ′)dt ′

t∫
0

eRt ′+
∫ t′

0 F(t ′′)dt ′′dt ′ (24)

with
∫ t

0 F(t ′)dt ′ = αFCA
1 sin(Ωt +ϕN1) +αTPA sin(Ωt +ϕ

A(2)
1
), K =

√
Pin
τin

, αTPA = 2
Ω

γTPAA(2)
1

2h̄ω

and αFCA = 2
Ω

γFCAN1
Ve f f

.

In the case of a photonic crystal cavity with an input power of 2 mW and a detuning of
-20 pm, as in the experiments, we have αTPA = 0.016 and αFCA = 0.004 + 0.123i and the
main contribution to the integral

∫ t
0 F(t ′)dt ′ comes from the imaginary part of αFCA. To further

simplify the calculations, we, first, only consider this contribution in the evaluation of R and

of the integral
∫ t

0 F(t ′)dt ′, i.e. R ≈ 1
2τ + i( γFCAN0

Ve f f
−�ω) and

∫ t
0 F(t ′)dt ′ ≈ αFCA

i sin(θ) with

αFCA
i = 2

Ω
iγFCA

i N1
Ve f f

, γFCA
i = Im(γFCA) and θ = Ωt +ϕN1.
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The Jacobi-Anger expansion is used to develop e
∫

F(t) as :

e
∫ t

0 F(t ′)dt ′ ≈ eαFCA
i sin(θ) = ∑ i3nIn(αFCA

i )einθ (25)

where the In are the modified Bessel functions of the first kind. In this expansion, only the
terms for n = −1, 0 and 1 are conserved as it can be checked that the influence of other terms
on the final values of the fundamental and the second harmonic is negligible as compared to the
influence of I1(αFCA

i )(eiθ −e−iθ ) in the case of our experimental conditions. As a consequence,
we have the following expressions :

t∫
0

eRt ′+
∫ t′

0 F(t ′′)dt ′′dt ′ = eRt
[

I0(αFCA
i )

R
− iI1(αFCA

i )

(
eiθ

R+ iΩ
− e−iθ

R− iΩ

)]
(26)

and

A = K

(
I0(αFCA

i )

R
− iI1(αFCA

i )

(
eiθ

R+ iΩ
− e−iθ

R− iΩ

))
e−αFCA

i sin(θ) (27)

We then deduced the energy as:

E = |A|2 = K2

∣∣∣∣ I0(αFCA
i )

R
− iI1(αFCA

i )

(
eiθ

R+ iΩ
− e−iθ

R− iΩ

)∣∣∣∣
2

(28)

that can be decomposed as

E = (E0 +2E1 cos(Ωt +ϕ1)+2E2 cos(2Ωt +ϕ2)) (29)

with

E0 = K2
(

I0(αFCA
i )2

|R|2 +
2|I1(αFCA

i )|2(Ω2 + |R|2)
(|R|2 −Ω2)2 +(2ΩRe(R))2

)
(30)

E1 = K2 2ΩIm(R)I0(αFCA
i )|I1(αFCA

i )|√
(|R|2 −Ω2)2 +(2ΩRe(R))2

(31)

and

E2 = K2 |I1(αFCA
i )|2√

(|R|2 −Ω2)2 +(2ΩRe(R))2
(32)

For consistency, this expression of E must be equal the one initially introduced in Eq. (19),

i.e. E0 = A(2)
0 , E1 = A(2)

1 with E2 negligible. We then get a set of two transcendental equations,

the first one in the unknown A(2)
0 and the second one in the unknown A(2)

0 and A(2)
1 , A(2)

1 being

one of the harmonic magnitudes we are looking for. The magnitude of the fundamental A(2)
1 can

be determined by solving numerically the equation A(2)
1 = E1 and the amplitude of the second

harmonic can then be calculated by using the expression of E2. A simple expression can be
obtained for the ratio of the second harmonic to the first one E2/E1:

E2

E1
� |I1(αFCA

i )|2
2ΩIm(R)I0(αFCA

i )|I1(αFCA
i )| (33)

In the conditions of the experiment, |αFCA
i |
 1, I0(αFCA

i )∼ 1, I1(αFCA
i )∼ 1

2 αFCA
i =

iγFCA
i N1
ΩVe f f

,

and we get:
E2

E1
�C0 × E1

E0
(34)
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where

C0 =
γFCA

i N0

Ve f f

|R|2
Ω2Im(R)

√
1+Ω2τ2

f c

(35)

C0 depends only on N0 and Ω , which are easily calculated from the steady-state solutions
and the eigenvalues of the linearized system (see above: solving the equations: steady state and
small perturbations).

For oscillations triggered by an input optical power higher than 2 mW, the expressions of Ω
and R reduce to Ω ∼ γFCA

i N0
Ve f f

−�ω and R ∼ iΩ, and the expression of C0 simplify to

C0 ∼ γFCA
i N0

τ f cΩ2Ve f f
∼ 1

Ωτ f c
×
(

1+
�ω
Ω

)
(36)

C0 will be lower at high frequencies, i.e. the signal will be more sinusoidal.
The same method can be used if the two-photon absorption and the free carrier absorption

are taken into account in the calculation of Eq. (24). The expressions of E0, E1, E2 and C0 then
become more complicated but they still simplify for an input optical power higher than 2 mW
and we get for C0 :

C0 ∼ 1
Ωτ f c

×
((

1+
�ω
Ω

)
− 3γTPAτ f cE0

4h̄ω

)
(37)

Numerically, for a detuning of -20 pm, C0 varies between 0.27 and 0.084 for an input power
varying from 1.5 mW to 20 mW. For Pin= 2 mW, C0 = 0.24 and E1/E0 =−21.4 dB, which gives
us E2/E1 �−33.6 dB, which is very close to the values found by the numerical simulation (see
Fig. 4b) : E1/E0 =−21.3 dB and E2/E1 =−34.7 dB. The amplitude of the second harmonic is
very low compared to the fundamental, which justifies the approximation of the energy function
by a sinusoid we made at the beginning.

In the case of a microring resonator of the kind described in Ref. [16], we have according
to our simulations αTPA = 0.042 and αFCA = 0.04+ 1.21i for a detuning of -2.5 pm and an
input power of 1 mW. Since |αFCA| > 1, we can no longer write eαFCA

i sin(θ) ∼ I0(αFCA
i )−

iI1(αFCA
i )(eiθ − e−iθ ), I0(αFCA

i ) ∼ 1 nor I1(αFCA
i ) ∼ 1

2 αFCA
i , and the formulae above are no

longer very accurate. However, they can still be used to estimate the importance of the second
harmonic. Numerically, for a detuning of -2.5 pm and an input power Pin= 1 mW, similar to
the experimental parameters used in Ref. [16], C0 = 0.37, E1/E0 =−6 dB and E2/E1 �−14.6
dB according to the formula (37), a value which is close to the value given by a full numerical
simulation (- 15 dB). Therefore, we can conclude that the greater nonlinearity of the oscillations
in a microring resonator is caused firstly by the higher value of C0, itself explained by the lower
value of the frequency of the oscillations in a microdisk, and secondly by the higher amplitude
of those oscillations.
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