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The spatial distribution of strain across the germanium layer is obtained by finite element 

modelling (FEM) of the structure assuming a 2D axisymmetric geometry calculation similarly 

to Ref. [1]. The FEM analysis provides the in-plane strain distribution across the Ge layer as 

shown in Figure S1 for different types of structures studied in this work.  

The spatial distribution of the strain tensor elements are then introduced into the modelling of 

the Ge band structure in the framework of a 30 band k.p formalism.
[2]

 The model allows one 

to calculate the dipolar matrix elements in TM and TE polarizations for the -HH and -LH 

transitions. The energies of the  and the L conduction band valleys and the dipolar matrix 

elements are calculated using the strain profile as obtained by the FEM analysis. Figure S2a 

shows an example of the band energies variation across the germanium layer for the all-

around SiN strained structure. The tensile strain induces a splitting of the valence band, hence 

the direct optical transition involves both -HH and -LH transitions at separated energies. 

The dipolar matrix elements variation across the germanium layer is calculated using the k.p 

formalism as: 

𝐷𝐻𝐻,𝐿𝐻
𝑇𝐸,𝑇𝑀 =

𝑚0

ℏ
⟨𝑢Γ|𝜀 ⃗⃗ ∙ ∇𝑘

⃗⃗ ⃗⃗ 𝐻𝒌.𝒑|𝑢HH,LH⟩
𝑘=0

                                                                           (S1)                                                                      

where |𝑢Γ ⟩ and |𝑢HH,LH ⟩ are the light hole (LH), heavy hole (HH) zone centre Bloch 

functions and the Γ conduction band eigenwavevectors respectively. 
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Figure S1. Finite element modelling of in-plane biaxial tensile strain profile across the Ge 

layer at the centre of a microdisk after SiO2 under-etching: stressor layer at the bottom only 

(blue curve), stressor layer on-top only (squares) and all-around stressed microdisk (red 

curve). 

 

𝐻𝑘.𝑝 is the k.p Hamiltonian as presented in Ref. [2]. The TE and TM polarizations are defined 

by the orientation of the polarization vector 𝜀 ⃗⃗  of the interacting electromagnetic field. Figure 

S2b shows the dipolar matrix elements spatial profile calculated for both -HH and -LH 

transitions in TE and TM polarizations. The gain profile associated with each transition and 

polarization type across the germanium layer is then calculated using an effective-mass 

approach following this equation:
[3]

 

𝛼𝑇𝐸,𝑇𝑀
𝐻𝐻,𝐿𝐻(ℏ𝜔) = 𝐶0𝜌𝐻𝐻,𝐿𝐻(ℏ𝜔 − 𝐸Γ,(𝐻𝐻,𝐿𝐻))|𝐷𝐻𝐻,𝐿𝐻

𝑇𝐸,𝑇𝑀|
2
×  

                                                [𝑓𝑐(ℏ𝜔 − 𝐸Γ,(𝐻𝐻,𝐿𝐻)) − 𝑓𝑣(ℏ𝜔 − 𝐸Γ,(𝐻𝐻,𝐿𝐻))]                       (S2)                                                                                                
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This equation is written in a condensed form since it involves four gain formulas, i.e. for -

HH and -LH transitions and in TE and TM polarizations. In Equation S2 𝐶0 =
𝜋 𝑒2

𝑛𝑟𝑐𝜖0𝑚0
2𝜔

 

where 𝑒 the elementary electron charge, 𝑛𝑟 the optical refractive index of germanium, 𝑐 the 

light speed in vacuum, 𝜖0 the vacuum permittivity,  𝑚0 the electron mass, 𝐸Γ,(𝐻𝐻,𝐿𝐻) are direct 

band gap energies ( 𝐸Γ − 𝐸𝐻𝐻 and 𝐸Γ − 𝐸𝐿𝐻), ℏ𝜔  the transition energy, 𝑓𝑐 and 𝑓𝑣   are Fermi 

statistics distribution and 𝜌𝐻𝐻,𝐿𝐻(ℏ𝜔 − 𝐸Γ,(𝐻𝐻,𝐿𝐻)) =
1

2𝜋2 (
2𝑚𝑟

ℏ2 )
3

2⁄

√ℏ𝜔 − 𝐸Γ,(𝐻𝐻,𝐿𝐻) are the 

joint density of states for the  and HH bands and the  and LH bands with 𝑚𝑟 the reduced 

effective mass defined by 
1

𝑚𝑟
=

1

𝑚Γ
+

1

m𝐿𝐻,𝐻𝐻
. We use the following effective mass of density 

of states: 𝑚𝐻𝐻 =  0.284m0 (m𝐿𝐻 = 0.043m0)
[4]

  𝑚Γ =  0.038m0 (m𝐿 =  0.56m0).
[5]

 Note 

that this formula supposes dipolar interactions between stationary conduction band and 

valence band states assuming a homogeneous broadening of zero for each transition. In reality 

the carrier interactions with vibrational modes of the crystal (phonon) and scattering effects 

lead to a homogeneous broadening that can be accounted for by introducing a Lorentzian 

shape to the transition by using the following equation:
[3]

 

𝛼𝑇𝐸,𝑇𝑀
𝐻𝐻,𝐿𝐻(ℏ𝜔) = 𝐶0|𝐷𝐻𝐻,𝐿𝐻

𝑇𝐸,𝑇𝑀|
2
  ∫ 𝑑𝐸 𝜌𝐻𝐻,𝐿𝐻(𝐸) × [𝑓𝑐(𝐸) − 𝑓𝑣(𝐸)]

Γ0
2𝜋⁄

(
Γ0

2⁄ )
2
+(𝐸Γ,(𝐻𝐻,𝐿𝐻)+E−ℏ𝜔)

2

∞

0
                   

(S3) 

where Γ0 is the full width at half maximum (FWHM) energy of the transition. We assume that 

𝐷𝐻𝐻,𝐿𝐻
𝑇𝐸,𝑇𝑀

 is independent from k.
[3]

 Note that this spectral broadening introduced in the model 

induces a decrease of the gain amplitude since the Lorentzian function is normalized to unity 

due to the conservation of the transition oscillator strength.  

 Fermi statistics 𝑓𝑐(𝐸) for electrons and 𝑓𝑣(𝐸) for holes allow one to calculate the carrier 

spatial distribution taking into account the band edge energy spatial variation induced by 
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strain. One can suppose that strain in the range of 1-2% will not produce significant changes 

of the doping across the layer so that the electron density Nd introduced by the doping is 

considered as constant across the Ge layer. Note that the electron distribution is weakly 

dependent on the position of the  valley which exhibits a low density of states due to the low 

effective mass 𝑚Γ  = 0.038m0 as compared to the L valley m𝐿 = 0.56m0. The excess carrier 

density distribution introduced by an external optical pumping of the germanium, n and p, are 

computed such that the carrier density at the z-position corresponding to the lower band 

energy point (in general near the top surface) is fixed at a chosen value. Different values can 

be estimated independently considering the generation recombination balance equation for a 

given optical pumping power density and by using proper relaxation rates depending on the 

experimental conditions and on the material properties. 

 

Figure S2. (a) Conduction and valence band energies across the Ge layer (b) Square modulus 

of dipolar matrix elements profile for TE and TM polarizations and for both direct  -LH and 

-HH transitions (c) Carrier density profiles across the Ge layer. 

 

The quasi-Fermi level is then pinned at the corresponding energy and is considered as 

constant for the rest of all the positions across the layer. The carrier density inside the layer is 
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then calculated with this fixed value of the Fermi level. The valence band energy variation 

across the layer induces a variation of the carrier densities. Note that the total electron density 

is such that N = 𝑁𝑑 + n with n = p. These carrier density distributions are then introduced to 

calculate the free-carrier absorption (FCA) profile across the layer. The parameters for the 

wavelength dependent free-carrier absorption are taken from Ref. [6]. Figure S2c shows the 

carrier density distribution across the Ge layer. As can be seen, the hole density was fixed to 

10
19

cm
-3

 near the surface and the band bending due to strain variation induces a variation of 

the hole density across the layer.  In this example a doping density of 2x10
19 

cm
-3

 was 

considered.  

The total net gain profile is calculated by summing the results from equation S2 (or S3 if 

considering a homogeneous broadening) and the FCA profile (calculated using the total 

carrier density profiles) at each z-position. This leads to the net gain profile at 1900 nm 

wavelength as the one presented in Figure 3a for TM polarization. The optical field 

distribution E(z) of the confined mode in the layer is calculated for TM (TE) polarization and 

then introduced in a final integration with the net gain profile to calculate the total modal gain 

in the structure. This process is realized at each wavelength of the gain spectrum. The field 

distribution is evaluated at several wavelengths to account for modal dispersion of the guided 

light in the layer. The net modal gain spectrum is then calculated for various excess carrier 

densities and level of doping as reported in Figure S3. The maximum gain of the spectrum as 

obtained from Figure S3 is then reported in the Figure 3c. The electromagnetic field 

distribution accounts for the vertical confinement only. This approximation provides a 

satisfactory description since the strain and the gain are quasi constant in the layer plane. 
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Figure S3. Modal gain spectra for different excess carrier densities assuming a 2x10
19

 cm
−3

 

doping density calculated using equation S2. 
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We have performed pulsed pumping experiments on the all-around stressed microdisk at high 

power in order to reach sufficient carrier injection for gain achievement (Figure S4). The 

pulse duration of the pumping laser at 930 nm wavelength is 4 ns and the repetition period is 

40 µs. The maximum peak power is varied from to 0.6 W to 6 W, and the beam is focused 

into a 10 µm spot diameter on the sample surface. These pumping conditions allow one to 

realize a high level of pumping while avoiding heating effects as can be observed for cw 

pumping of suspended membranes.
[7,8]

 At the lower level of pumping power, the spectrum is 

similar to the one observed for low pumping power in cw with a maximum of the emission 

around 2 µm wavelength and is dominated by the fundamental direct band gap transition 

involving recombination with light holes -LH (Figure 2d). Note that the signal is analysed 

with an extended InGaAs photodiode cooled at -85°C which exhibits a cut-off wavelength at 

2050 nm, while for the measurements of Figure 2d the photodiode was used at room 

temperature to reach larger cut-off wavelength. When the power is increased from 0.6 W to 6 

W the emission is blue shifted so that the contribution from -HH becomes dominant on the 

spectrum as shown in Figure S4a. This spectral dependence with power is well reproduced in 

the modelling of the emission when the excess carrier density is increased from 2x10
18

 cm
-3

 to 

1.6x10
19

cm
-3 

(see Figure S4b). It explains why we indicate in the text that we can obtain a 

photo-induced carrier density in the 10
19

cm
-3 

range. 
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Figure S4. (a) Experimental photoluminescence spectrum of the all-around stressed 

microdisk under pulsed pumping for different pump powers (b) calculated spectrum for 

various injected carrier densities in order to reproduce the experimental spectrum dependence 

as a function of the increasing power. 
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