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Exploring non-Euclidean photonics: Pseudosphere microlaser
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Classical and wave properties of microlasers with the shape of a truncated pseudosphere are investigated
through experiments and numerical simulations. These pseudosphere microlasers are surface-like organic micro-
lasers with constant negative curvature, which were fabricated with high optical quality by direct laser writing.
It is shown that they behave, in many ways, similar to two-dimensional flat disks, regardless of their different
Gaussian curvature. We derive the monodromy matrices for geodesics on the pseudosphere and demonstrate that
the periodic geodesics are marginally stable. Actually, due to the rotational symmetry, the pseudosphere is an
integrable system with marginally stable dynamics.
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I. INTRODUCTION

This work on non-Euclidean photonics explores the ray and
wave dynamics on the pseudosphere, a surface with constant
negative curvature. Actually, surfaces with positive curvature,
like the sphere, the bottle [1], or the exterior of a toroid [2],
have already given rise to abundant literature in photon-
ics because of their relative ease of fabrication from glass
by melting. On the contrary, negatively curved surfaces—
a field of research also called hyperbolic geometry—were
intensively investigated by mathematicians [3], theoretical
physicists [4–8], and artists [9], while very few experiments
were carried out [10,11] until the recent rise of three-
dimensional (3D) printing at the microscale by direct laser
writing (DLW) [12,13]. This mature technology contributes
by now to photonics, as illustrated by the pseudospherical
microlaser shown in Fig. 1.

In photonics, negatively curved surfaces provide two par-
ticular properties:

(1) On a curved surface light no longer propagates along
straight lines, but along geodesics, which are the shortest paths
between two points.

(2) On a negatively curved surface each geodesic is unsta-
ble [14,15]. That means that any pair of nearby trajectories
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will diverge exponentially from each other, which is the sig-
nature of chaotic dynamics.

In this paper we resort to two simplifications by choosing
curved surfaces with the following properties:

(1) The curvature is certainly negative, but moreover con-
stant, which allows to analytically calculate the stability of
geodesics, as outlined in Sec. IV, and gives access to the
Poincaré half-plane (see Sec. II B), which is a very convenient
parametrization for studying hyperbolic geometry.

(2) We consider a truncated surface of revolution, which
preserves rotational symmetry, implying that the angular
momentum is conserved, in addition to the energy. As prop-
agation confined to the surface is a two-dimensional (2D)
dynamical system, there are as many constants of motion as
degrees of freedom, implying an integrable dynamics.

Among all the possible surfaces with these properties [16],
we focus on the tractoid defined in Sec. II. This surface has
already been widely investigated, in particular in Ref. [4].
Our main contributions to this field are the stability (≡ mon-
odromy) matrices for propagation and reflection exhibited in
Sec. IV and derived in Appendix C. The demonstration is
similar for classical massive particles and for light rays, as
they basically follow the same equations [17]. We also show
that each periodic geodesic is marginally stable, as expected
for a classically integrable dynamics.

On the wave-dynamical level (both matter waves or elec-
tromagnetic waves), the rotational invariance makes the wave
equation separable on the tractoid surface. Then, the radial
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FIG. 1. (a) SEM image of a tractoid microlaser with radius
R0 = 20 µm and thickness δ = 2 µm. (b) Schematic of a half tractoid
microlaser with the same radius and thickness. The cavity with finite
thickness δ is obtained by vertically shifting two tractoid surfaces
with respect to each other. The height of the microlaser is around
h = 40 µm.

part of the Helmholtz equation (for light) is mathematically
equivalent to a Schrödinger equation with an effective po-
tential, which can be solved either analytically (Sec. V B)
or numerically (Sec. V D), showing intriguing similarities
to the flat circular disk. Moreover, experiments reported in
Sec. III evidence lasing emission from whispering gallery
modes (WGMs), like in most circular microresonators. Fi-
nally, Sec. VI concludes the comparison between the flat disk
and the tractoid with a full 3D numerical analysis, taking into
account the actual thickness and polarization.

II. TRACTOID AND POINCARÉ HALF-PLANE

This first section introduces the tractoid surface and its
representation in the Poincaré half-plane.

A. Parametrization of the tractoid

A pseudosphere (or pseudospherical surface) is a 2D sur-
face embedded in the 3D-Euclidean space with constant
negative Gaussian curvature. The simplest example of a pseu-
dosphere is the tractoid, which is studied hereafter. A tractoid
of radius R0 is a surface having a Gaussian curvature − 1

R2
0

at each point. For obvious similarities with the sphere of
radius R0, whose Gaussian curvature is + 1

R2
0
, the tractoid is

commonly referred to as a pseudosphere in the literature. A
typical parametrization of the tractoid surface �r = �F (u, v) is

X = FX (u, v) = R0
cos(v)

cosh(u)
(1)

Y = FY (u, v) = R0
sin(v)

cosh(u)
(2)

Z = FZ (u) = R0[u − tanh(u)], (3)

where R0 is the radius of the tractoid, u ∈ [0,+∞) is the pa-
rameter along the generatrix, and v ∈ [0, 2π ) is the azimuthal
angle (cf. Fig. 2). With this choice of local coordinates (u, v),
the metric tensor has a form which is common for all surfaces
of revolution (SORs),

ds2
SOR = E (u)du2 + G(u)dv2, (4)

FIG. 2. Transformation from the tractoid to the Poincaré half-
plane. Two kinds of geodesics corresponding in the Poincaré half-
plane either to a vertical line (orange) or to a half-circle whose center
is on the x axis (red) are sketched in both geometries. The blue circu-
lar lower boundary of the tractoid is mapped into the horizontal line
y = 1. Finally, the hatched area cannot be mapped on the tractoid.

where E and G are related to the radius of revolution R =√
X 2 + Y 2 and to Z as

G(u) = R2(u) (5)

E (u) =
(

dR

du

)2

+
(

dZ

du

)2

. (6)

For the specific case of the tractoid, we find

G(u) = R2
0

cosh2 u
(7)

E (u) = R2
0 tanh2 u. (8)

Even though the tractoid is the simplest example of a
surface with constant negative curvature embedded in R3,
computations can become tedious and it is generally more
convenient to work in the Poincaré half-plane, which is de-
picted in Fig. 2 and further described in the next paragraph.

B. The Poincaré half-plane

The Poincaré half-plane representation corresponds to the
upper half-plane H = {(x, y) ∈ R2 | y > 0} endowed with the
Poincaré metric

ds2
HP = R2

0
dx2 + dy2

y2
. (9)
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FIG. 3. Photographs of a tractoid microlaser illuminated with a
low-intensity white light without pumping (a) and with pumping (b).
The green pump light is removed by a notch filter, while the laser
emission is orange. (c) Intensity of the peak at 601.56 nm vs the
pump intensity. The threshold is about 0.12 MW cm−2. Above 0.2
MW cm−2 the curve has an irregular increase (not shown), which is
a signature of mode competition.

The transformation

([0 ; +∞), [0 ; 2π )) −→ H

(u, v) �−→ (x, y) = [v, cosh(u)], (10)

which maps the tractoid onto the subspace A = {(x, y) ∈ R2 |
y � 1} of H, preserves both the angles (conformal mapping)
and the distances (isometry). Therefore, both the geodesic
equation and the wave equation are conserved under this
mapping [18]. In particular, this means that distances can be
computed on the tractoid as well as in the Poincaré half-plane.
The length of a geodesic starting at (x1, y1) and ending at
(x2, y2) equals [4]

L = 2R0arcsinh

(√
(x1 − x2)2 + (y1 − y2)2

2
√

y1y2

)
. (11)

Note that the edge u = 0 of the tractoid is mapped to the line
y = 1 (blue line in Fig. 2), and only the part of the Poincaré
plane above y = 1 is accessed by the transformation Eq. (11).

The main advantage of working in the Poincaré half-plane
is that the functional dependence of the geodesics on the
coordinates is simple. Indeed, there are only two kinds of
geodesics. These are either parts of circles, of which the
centers are on the x axis, or they are straight lines x = const.
perpendicular to the x axis, as shown in Fig. 2. Therefore, most
of our calculations will be done in the Poincaré half-plane.

III. TRACTOID MICROLASER AND EXPERIMENTAL
RESULTS

In this section we briefly explain the fabrication of the trac-
toid microlasers by DLW, we describe the experimental setup,
and exhibit results regarding the analysis of experimental laser
spectra.

A. Tractoid fabrication and experimental setup

In the experiment, we designed a curved waveguide in
the shape of the tractoid by shifting two tractoid surfaces
of radius R0 = 20 µm with respect to each other. The dis-
tance between the two tractoid surfaces, δ = 2 µm, defines
the thickness of the tractoid microcavity [cf. Fig. 1(b)]. It
was cut at umax = 3, which corresponds to a height of about
40 µm. The 3D design of the tractoid microlasers was created
using the free OPENSCAD software. We would like to stress at
this point that the tractoid microcavity differs from a math-
ematical tractoid surface because of its finite size, which is

accounted for in the computations by considering truncated
tractoids. Another difference is the finite thickness of this and
other curved microcavities. Yet, they can still be described
by the scalar Helmholtz equation using the concept of the
effective index of refraction [13], as outlined below.

The tractoid microlasers were then fabricated by DLW
lithography using the Photonic Professional GT+ system with
negative resist IP-G from the company Nanoscribe. The resist
was doped by 0.5 wt% pyrromethene 597 laser dye (by the
company Exciton) which was homogeneously distributed in
the bulk host resist. A scanning electron microscope (SEM)
image of a tractoid microlaser is shown in Fig. 1(a).

The tractoid microlasers were pumped individually and
with uniform intensity by a beam perpendicular to the sub-
strate from a frequency-doubled Nd:YAG laser (532 nm,
500 ps, 10 Hz). Their emission was analyzed by a spectrome-
ter coupled to a CCD camera, providing an overall resolution
of 0.03 nm. The experiments were carried out at room pres-
sure and temperature. The microlaser light was mostly emitted
parallel to the substrate plane. The photograph in Fig. 3(b)
shows a tractoid microcavity under pumping. The laser emis-
sion mainly originates from the circular boundary at a near
grazing angle and is observed from all directions, which is
consistent with the rotational symmetry of the microcavity.
These observations are reproducible from sample to sample,
thus indicating that the lasing modes are mainly WGMs as
confirmed by the analysis of the laser emission spectra pre-
sented in the next section. A typical comb-like laser spectrum
is shown in Fig. 4(a).

The threshold curve plotted in Fig. 3(c) evidences the laser
effect. The laser threshold is about 0.12 MW cm−2, which is
one order of magnitude lower than for microlasers of simi-
lar size and materials, evidencing the high quality factor of
WGM.

Moreover, the tractoid microlaser emission is polarized
with the electric field oriented parallel to the substrate, which
corresponds to transverse electric polarization (TE) and will
be discussed further in Sec. VI.

B. Spectrum analysis

A typical experimental laser spectrum is presented in
Fig. 4(a). It is composed of several frequency combs. For
each comb, the free spectral range or distance between two
adjacent wave numbers �k is inversely proportional to the
geometric length L of the corresponding classical periodic
orbit, as may be inferred from the semiclassical approximation
of the spectral density [19]

�k = 2π

ngL
. (12)

Here, ng is the group refractive index, whose calibration pro-
tocol is detailed in Appendix V of Ref. [13] and yields ng =
1.58 ± 0.05. The meaning of the bulk, effective, and group
indices involved in this study is explained in Appendix A.

In Fig. 4(b), the Fourier transform of the spectrum was
calculated via three different methods, which are discussed
in detail in Appendix B. Our conclusion is that the position of
the peak is most accurately determined with the Lomb method
and moreover the result is less noisy.
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FIG. 4. (a) Experimental laser spectrum of a tractoid microlaser.
(b) Normalized Fourier transform of the spectrum in (a) from wave
number to optical length using three different numerical methods:
(top) discrete Fourier transform (DFT) algorithm which assumes that
the sampling is regular, while the actual experimental data are not
regularly sampled; (middle) same DFT algorithm, but taking into
account the actual spacing between data points; and (bottom) Lomb
transform. The perimeter of the tractoid microlaser is indicated by
the red dashed line.

The Fourier transform is peaked at ngL = (193 ± 6) µm.
This length is slightly smaller than the perimeter of the trac-
toid P = ng2πR0 = (198 ± 10) µm as shown by the dashed
red line in Fig. 4(b). It thus corresponds to WGMs propagating
along the circular boundary of the microlaser at u = 0, which
is consistent with the observation of emission spots located
on the boundary of the tractoid [cf. Fig. 3(b)], as discussed in
Sec. III A.

IV. STABILITY OF THE PERIODIC GEODESICS

This section deals with the classification and stability of
periodic geodesics on the tractoid. Since the experiments
were carried out in the semiclassical regime kR0 	 200, the
geometrical optics approach is relevant. In this regime, the
spectral density is well approximated in terms of a sum over
periodic geodesics with a weighting depending on their sta-

bility [20], and thus experimentally accessible through the
Fourier transform of the spectra. We demonstrate here that
each periodic geodesic of the full tractoid u ∈ [0,+∞[ is
marginally stable, as expected from the rotational invariance.
The case of the truncated tractoid is similar and analyzed in
Appendix C 4.

A. Classification of the periodic geodesics

To determine the stability of the periodic geodesics of the
full tractoid with u ∈ [0,+∞[, we work in the Poincaré half-
plane, since there is a one-to-one correspondence between
geodesics on the actual tractoid and in the Poincaré half-plane
where their expression is simpler (cf. Sec. II B).

There exist only two families of geodesics, the vertical
lines x = constant and arcs of circles with center on the x
axis y = 0. A trajectory on the tractoid cannot switch from
one kind of geodesics to the other one. Indeed, when moving
along a straight-line geodesic, the ray is reflected back at
y = 1, while a ray evolving on a circular-arc type geodesic
does not impinge the line y = 1 perpendicularly. Therefore,
arcs of circles are the only way to obtain periodic geodesics.

Since the angles before and after reflection are the same,
the ray propagates along a periodic array of identical circular
arcs. Two examples are depicted in Fig. 5. Thus, periodic tra-
jectories are uniquely identified by a pair of positive, relatively
prime integers (M, P) where M is the number of bounces on
the boundary y = 1 and P is the winding number, that is, the
number of complete rotations of 2π around the tractoid. Thus,
the periodic geodesics on the tractoid have the same structure
as periodic orbits of the flat disk.

The length LM,P of the (M, P)-periodic geodesic as well as
θM,P the angle between the line y = 1 and the geodesic at the
reflection point read (cf. Fig. 5 for the notations)

LM,P = 2MR0arcsinh

(
P

M
π

)
(13)

tan θM,P = P

M
π. (14)

They will be used to determine the stability of the periodic
geodesics in the next paragraph.

B. Stability of the periodic geodesics

The stability of the (M, P)-periodic geodesic depends on
the eigenvalues of its monodromy matrix M, which describes
the result of a small perturbation of the initial conditions
on the trajectory (see Appendix C for the definition). Since
the (M, P)-periodic geodesic corresponds to M repetitions of
the same circular arc, M is the product M = (M0)M where
M0 = P R is the product of P the monodromy matrix for the
propagation along a single circular arc, and R the monodromy
matrix for reflection on the circular boundary of the tractoid.

After computations based on Ref. [21] and detailed in
Appendix C, the monodromy matrix P (t ) for the propagation
along a geodesic over a distance t is given by

P (t ) =
(

cosh
(

t
R0

)
R0 sinh

(
t

R0

)
1

R0
sinh

(
t

R0

)
cosh

(
t

R0

)
)

. (15)
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FIG. 5. Periodic geodesics with indices (M, P) = (5, 1) (red) and (M, P) = (3, 2) (green) (a) in the Poincaré half- plane and (b) on the
tractoid.

This expression is relatively simple because the tractoid has
a constant Gaussian curvature. Then, the general formula for
the monodromy matrix of reflection with incident angle χ of
a ray propagating on a curved surface is

R(χ ) =
(

−1 0
2εκt
cos χ

−1

)
, (16)

where ε = ±1, and κt is the modulus of the tangent curvature
(also called geodesic curvature), which measures the curva-
ture of the boundary in the plane which is tangent to the
surface and is also the plane of incidence of the trajectory.
General formulas for κt and ε are given in Appendix C 2. For a
reflection on the lower circular boundary of the tractoid u = 0,
ε = +1, and κt = 1

R0
. Then, using formulas (13) and (14),

one obtains (see Appendix C 3)

tr[M0(M, P)] = tr[P (M, P)R(M, P)] = 2. (17)

As det M0 = 1, the two eigenvalues of M0 are both equal to
1. Therefore, like for the flat disk, every periodic geodesic is
marginally stable. This might come as a surprise because the
propagation itself is unstable, i.e., tr(P ) > 2. Yet, the focusing
effect from the reflection at the boundary cancels the diver-
gence during propagation. Of course, it is also a consequence
of the rotational symmetry of the tractoid.

Finally, using a ray-tracing algorithm, we numerically
compute the Poincaré surface of section (PSOS) of the trac-
toid. As shown by Fig. 6, every trajectory covers a horizontal
line with sin χ = constant, which is a manifestation of angular
momentum conservation. The phase space structure is identi-
cal to that of a flat disk. There are neither stable islands nor a
chaotic sea which is typical for integrable billiard systems.

To conclude this section, every periodic geodesic is
marginally stable, as expected for a surface of revolution. It
should be noted that the truncated tractoid (u ∈ [0, umax]) is
also a surface of revolution. While other periodic geodesics

exist in this geometry, their stability is also neutral, as outlined
in Appendix C 4.

V. SOLUTIONS OF THE WAVE EQUATION WITH
DIRICHLET BOUNDARY CONDITIONS

The electromagnetic field obeys Maxwell’s equations with
a refractive index n(�r) being 1.51 inside the tractoid [22]
and 1 outside. The numerical simulations of Sec. VI make no
additional assumption [23]. In this section, we simplify the
physical system to perform analytical calculations and provide
a deeper understanding.

Following the “effective index approximation” for curved
layers proposed in Ref. [13], we assume that the light is well
confined within the layer and propagates with an effective

FIG. 6. Poincaré surface of section for the truncated tractoid
(umax = 2). Each color corresponds to a specific initial condition
(v, χ ). Inset: Definition of the incident angle χ and the curvilinear
coordinate v for the position on the boundary.
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index neff, which accounts for the varying refractive indices
in the direction perpendicular to the surface. Furthermore,
Ref. [24] demonstrated that the tractoid surface should support
two distinct polarization classes of modes, transverse electric
modes or TE modes (resp. transverse magnetic modes or TM
modes) for which the electric (resp. magnetic) is parallel to
the tractoid surface. Actually, all the necessary assumptions
of Ref. [24] are valid for the tractoid, namely, it is a surface
of revolution, its main curvature H is null, and the lasing
wavelength is much smaller than the scale of the curvature.
Experimental results also indicate that the lasing modes of the
tractoid microlaser are TE modes (with the electric field in the
plane Z = 0). Hence, we can resort to the 2D scalar Helmholtz
equation (

�s + n2
effk

2)ψ = 0, (18)

where �s is the Laplace operator restricted to the tractoid sur-
face, and the wave function ψ corresponds to the component
of the magnetic (resp. electric) field normal to the surface for
TE modes (resp. TM modes).

Due to rotational symmetry, the wave equation (18) is
separable, and can be solved analytically. To simplify the an-
alytical treatment, and later on facilitate the comparison with
the flat disk, we impose Dirichlet boundary conditions, i.e.,
ψ (u = 0, v) = 0, ∀v ∈ [0, 2π [. In this case, neff acts merely
as a scaling factor, so we set neff = 1.

In Sec. V A, we separate variables in order to write Eq. (18)
as a Schrödinger-like equation along the radial coordinate.
The localization of the wave at the boundary u = 0 can then be
interpreted through an effective potential. Then, in Sec. V B,
we derive the analytical solutions of Eq. (18), which are com-
pared to the analytical solutions of the flat disk in Sec. V C.
As the analytical solutions of the tractoid are not easy to
handle, we propose an efficient numerical method in Sec. V D
to provide a large number of eigenvalues. Finally, we show
that their distribution is consistent with an integrable system.

A. Schrödinger-like equation

The Laplacian operator is given by

�sψ = 1√
g

2∑
i, j=1

∂

∂qi

(√
ggi j ∂ψ

∂q j

)
(19)

with gi j the metric tensor, gi j its inverse, and g = det(gi j ).
Hereafter, the derivation is presented in the Poincaré half-
plane for simplicity. The equivalent derivation in the actual
tractoid is described in Appendix D. The metric tensor of
the Poincaré half-plane is gi j = R2

0 y−2 δi j . Then, the Laplace
operator in the Poincaré half-plane is

�s = y2

R2
0

�xy = y2

R2
0

(
∂2

x + ∂2
y

)
(20)

with �xy = ∂2
x + ∂2

y the Laplace operator in the Euclidean
plane. Hence, the wave equation becomes

[y2�xy + (kR0)2]ψ = 0. (21)

This equation can be solved by variable separation using
the ansatz ψ (x, y) = ζ (y)eimx with m ∈ Z. By inserting the

FIG. 7. Effective potential well, V (m)
eff (η) = m2e2η, for m = 60

emerging from the Schrödinger-like equation (24) for the truncated
tractoid (black solid line). η = 0 corresponds to the boundary u =
0. The red line is the real-valued wave function corresponding to
m = 60 and p = 3. With a μ2 offset, it oscillates around the horizon-
tal dotted line which is positioned at the eigenenergy μ2.

expression of ψ in the wave equation (21), we obtain the
equation satisfied by ζ ,

−y2 d2ζ

dy2
+ y2m2ζ (y) = (kR0)2ζ (y). (22)

The y2 term in front of the second derivative is removed with
the change of variable y = eη. Then, the first-order derivative
is removed by introducing the function ξ (η) defined by

ζ (η) = e
η

2 ξ (η). (23)

Finally, we obtain a Schrödinger-like equation satisfied by ξ

−d2ξ

dη2
+ m2e2ηξ (η) = μ2ξ (η), (24)

where μ2 = (kR0)2 − 1
4 . This equation corresponds to a

Schrödinger equation for a particle trapped in the potential
well V (m)

eff (η) = m2e2η. It is plotted for m = 60 in Fig. 7 to-
gether with the occupation probability density ψ (u, v)2 with
(m, p) = (60, 3), which is similar to that for the correspond-
ing flat disk near the bottom of the effective potential, at the
boundary u = 0, i.e., η = 0.

Furthermore, Eq. (24) can be transformed into a Bessel
equation with imaginary index, as shown in the next para-
graph.

B. Analytic solutions

In this section, we exhibit analytical solutions of the 2D
wave equation for the tractoid [6] and compare them with the
flat disk.

We start from the wave equation (22) obtained in the
Poincaré half-plane after separation of the variables, and per-
form the variable change w = my. Then, the function change
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ζ (w) = √
w γ (w) leads to

d2γ (w)

dw2
+ 1

w

dγ (w)

dw
−

[
1 +

1
4 − (kR0)2

w2

]
γ (w) = 0, (25)

which is actually the equation for a modified Bessel func-
tion with index μ̃, where μ̃2 = 1/4 − (kR0)2 and μ̃ =
i
√

(kR0)2 − 1/4 ≡ iμ, which is purely imaginary for kR0 >

1/4. This equation has two linearly independent solutions
which are called the modified Bessel function of the first and
the second kind Kiμ and Iiμ. They are related to the Bessel
functions of the first and the second kind by

Iiμ(w) = eμ π
2 Jiμ(iw) (26)

Kiμ(w) = iπ

2
e−μ π

2 [Jiμ(iw) + iYiμ(iw)]. (27)

A general solution of the wave equation can thus be written as
a linear combination of Iiμ and Kiμ. However, Iiμ(w) diverges
for w → ∞, while Kiμ(w) is finite. Therefore, if we consider
the whole tractoid with u → ∞ (i.e., w → ∞), only the Kiμ

solution should remain:

ψ (u, v) = Ceimv
√

m cosh u K
i
√

(kR0 )2−1/4
(m cosh u) (28)

with C ∈ C a constant. For simplicity, we consider the
Dirichlet boundary condition at u = 0, that is,

K
i
√

(kR0 )2−1/4
(m) = 0. (29)

For a given integer m, the real k values satisfying Eq. (29) are
denoted as km,p with p = 1, 2, . . . the radial order of the root.
Finding these roots km,p is still an open problem in spite of the
broad bibliography. Recently, it became possible to obtain an
analytical solution of this equation for large values of k [25].
Nevertheless, the matrix method developed in Sec. V D pro-
vides an efficient way to approximate these roots. Indeed, the
eigenvalues computed in Sec. V D are compared to the roots
of Eq. (29) around m = 130 computed by the FindRoot com-
mand on MATHEMATICA and plotted in Fig. 8. The agreement
between both spectra is excellent, with a relative difference
smaller than 4 × 10−6 for the first branch p = 1 and around
2 × 10−5 for the third branch p = 3.

C. Comparison with the flat disk

In the previous paragraph, we showed that the wave equa-
tion of the tractoid can be solved analytically. Its spectrum
will be now compared with the spectrum of the flat disk.

Solutions of the radial wave equation for a disk of radius
R0 with Dirichlet boundary conditions are the Bessel function
of the first kind, that is, ψ (r, ϕ) = Jm(kr)φ(mϕ), with φ(x) =
cos x or φ(x) = sin x in polar coordinates (r, ϕ) with m ∈ N.
The spectrum is real positive and is given by the boundary
conditions

Jm(kR0) = 0. (30)

A major difference with Eq. (29) for the tractoid is that there
the wave number k appears in the index iμ of the modified
Bessel function and not in the argument, as in Eq. (30). The
spectra of the disk and the tractoid are plotted in Fig. 9.
When m is sufficiently large, and p small, modes of the disk

FIG. 8. Comparison between the analytical spectrum of the trac-
toid computed with MATHEMATICA (open squares) and the numerical
spectrum computed using the matrix approach developed in Sec. V D
(dots).

and the tractoid are very close to each other. For p = 1 and
m 	 100, the relative difference between modes of the disk
and the tractoid is around 0.2%. When p gets larger, the differ-
ence also increases. Actually, for a large azimuthal number m
and a small radial number p, the wave is mainly located along
the circular boundary of the tractoid [cf. Fig. 10(a)], where the
tractoid surface looks similar to a flat disk.

FIG. 9. Comparison between the spectrum of the flat disk
(squares) and the spectrum of the tractoid (dots). The radial order
p is equal to 1 (bottom), 2 (middle), and 3 (top). Only modes in
the range m = 120–145 are shown. The disk spectrum is calculated
analytically and the tractoid spectrum is obtained by the method
described in section V D.
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FIG. 10. (a) Different views of the (10, 4) mode (top) and the (111, 2) mode (bottom) calculated by the matrix approach of Sec. V D. The
wave functions are real-valued. (b) Nearest-neighbor spacing distribution calculated based on the 4000 modes found between kR0 = 75 and
kR0 = 150. The Wigner surmise for random matrices from the Gaussian orthogonal ensemble (GOE) is plotted with a dashed black line, and
the Poissonian distribution with a solid red line.

D. Numerical procedure to solve the wave equation

Since the roots of Eq. (29) are not easy to compute, we
employed a convenient numerical finite-element method to
solve the Schrödinger-like Eq. (24) for the effective potential
of Fig. 7 corresponding to the tractoid, which is explained in
Appendix E.

For comparison with previous paragraphs, we consider
Dirichlet boundary conditions at η = 0 (corresponding to
u = 0). As discussed before, the wave functions are expected
to be localized in the potential well at η = 0, and to be insen-
sitive to the boundary condition at η = ηmax (corresponding
to a tractoid truncated at u = umax). Therefore, to simplify,
we also apply Dirichlet boundary condition at η = ηmax. To
summarize, we have to solve Eq. (24) with the Dirichlet
boundary conditions ξ (η = 0) = ξ (ηmax) = 0, where eηmax =
cosh(umax).

After a discretization protocol explained in Appendix E,
we obtain a system of linear equations that can be written with
matrix notations as

(T + V ) �ξ = H�ξ = μ2�ξ, (31)

where the notation H = T + V has been used. T is a tridi-
agonal matrix which accounts for the kinetic energy term and
the effective potential is represented by the diagonal matrix V .
The operator H is then equivalent to the Hamiltonian operator
of a quantum mechanical system.

The problem of finding the wave functions and the cor-
responding wave numbers kR0 has been turned into finding
the eigenvectors and the eigenvalues of the tridiagonal matrix
H. It can be done by using the relatively robust representa-
tions method implemented on PYTHON in the scipy library.
Similarly to the disk, modes are denominated by two integers,
m and p. For a given azimuthal number m ∈ Z, there are
several solutions indexed by the radial number p ∈ N∗. Some
examples of wave functions are shown in Fig. 10(a). They
resemble WGMs in a flat disk.

Using this numerical approach for umax = 3 and N = 9400
discretization points, we found about 4000 eigenenergies

from kR0 = 75 to kR0 = 150. By comparison with the Weyl
formula (see Appendix F), we then obtained 98.5% of the
eigenvalues in this range. The nearest-neighbor spacing distri-
bution (NNSD) was calculated based on the method described
in Appendix G and is plotted in Fig. 10(b). It exhibits a
Poissonian distribution as expected for integrable sys-
tems [26].

To conclude this section, as the tractoid is rotationally sym-
metric, its wave equation is separable. Its radial part solves a
modified Bessel equation. Its solutions are similar to the wave
functions of the flat disk, at least near the bottom of the effec-
tive potential, at the boundary u = 0. This corroborates and
enlightens the observation of lasing WGMs in experiments.

VI. MODE COMPUTATION IN THE DIELECTRIC
TRACTOID CAVITY

In the previous section, we solved the 2D wave equation for
the tractoid surface. In experiments, however, the microcavity
has a finite thickness. Therefore, this section deals with 3D
passive numerical simulations which take into account the
thickness and the dielectric boundary of a realistic tractoid
resonator. We also consider a disk with a small thickness (i.e.,
a flat cylinder) for comparison.

Numerical simulations of the passive system were per-
formed with a homemade 3D finite difference time domain
(FDTD) code. The radius is R0 = 8 µm and the thickness is
δ = 0.15 µm for both cavities, and the height is h = 4 µm for
the tractoid. As we investigate modes with a wave number
Re(kR0) ≈ 100, we expect a single vertical excitation in the
thickness.

Due to their rotational symmetry, the modes of the disk
and the tractoid are twofold degenerate. Therefore, we restrict
the simulation domain to half a tractoid (and half a disk)
and to even wave functions, which corresponds to imposing
Neumann boundary conditions along the plane X = 0. The
source is a linear dipole positioned in the plane X = 0 at u =
0.23, which is very close to the boundary. In Figs. 11 and 12 ,
the source is oriented parallel to the Y axis, and thus excites
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FIG. 11. Numerical spectrum calculated by 3D FDTD simula-
tions for a tractoid cavity (dots for the TE modes and crosses for the
TM modes) and a disk cavity (empty squares). The modes (m = 70,
p = 1) for the disk and the tractoid are circled in red.

preferentially TE-polarized modes. However, if the source is
parallel to the Z axis, the simulation does not yield any usable
signal. The computed spectra of the tractoid and the disk
are plotted in Fig. 11. The resonance wave numbers are orga-
nized in several branches. To get further insight into the mode
structure, we compute the mode profile of a given resonance
using a source with a very narrow frequency range around the
central frequency of this specific mode. It is inferred from
the mode profiles that each branch of the tractoid spectrum
corresponds to a given radial excitation p, with increasing m
azimuthal numbers, in full similarity with the disk spectrum.
For a given pair (m, p), the resonance wave number km,p of
the tractoid is slightly shifted toward higher frequencies and
higher losses compared to the disk. For illustration, the modes
(m = 70, p = 1) of the disk and the tractoid are circled in red
in Fig. 11.

Figure 12 presents the four modes inferred from the
tractoid simulations with a source at a central frequency
Re(kR0) 	 100. The profiles of these wave functions are in
complete agreement with the results of Sec. V. Each mode
belongs to a different branch of the spectrum of Fig. 11. The
modes of branches 1, 2, and 4 are TE polarized with p = 1,
2, and 3 radial excitations respectively, while branch 3 is TM
polarized with a single radial excitation p = 1. This splitting
of polarizations is expected since the tractoid surface fulfills
the corresponding assumptions of the model in Ref. [24]. For
the disk, only TE modes are excited with such a source.

In experiments, TM modes are not lasing, which can be
explained by the higher losses of TM modes compared to TE
modes, as shown in Fig. 11.

Finally, Fig. 13 shows that this 3D numerical spectrum
is very close to the analytic spectrum obtained in Secs. V B
and V D, which validates a posteriori the use of Dirichlet
boundary conditions in the analytic treatment, consistent with
high-quality-factor WGMs [28].

VII. CONCLUSION

Organic tractoid microlasers were investigated both
experimentally and theoretically. We evidenced that, thanks to
its rotational symmetry, the tractoid shares many ray and wave
properties with the 2D flat disk, despite its constant negative
curvature.

From the level of ray dynamics, we calculated the mon-
odromy matrices for propagation and reflection on a constant
negative surface, and then showed that all periodic geodesics
on the tractoid are marginally stable. From a wave point of
view, we have numerical and experimental evidences that las-
ing modes are indeed WGMs. We noticed that modes exhibit
two polarization states, namely, TE and TM polarization, sim-
ilar to flat cavities. Finally, the scalar wave equation can also
be solved analytically leveraging on the rotational symmetry
to separate variables.

Working with the Poincaré half-plane representation sig-
nificantly simplifies the computations, but most methods
discussed in this paper can also be applied to any surface of
revolution.

In summary, the tractoid is integrable because of its rota-
tional symmetry and in spite of the exponential divergence
of ray trajectories induced by the negative curvature. When
breaking the rotational symmetry, however, chaotic dynamics
is expected [7], which will be the focus of a further explo-
ration in non-Euclidean photonics.
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APPENDIX A: BULK, EFFECTIVE, AND GROUP INDICES

This Appendix discusses the different refractive indices
relevant for the microlasers presented here.

(1) The bulk index is the refractive index of the material
itself. The bulk index of the resist IP-G was measured 1.51 at
a wavelength of 600 nm in Ref. [22]. It is probably slightly
different in our experiments due to the addition of the laser
dyes and to the fabrication process. But as this index is dif-
ficult to measure precisely and its variation does not change
significantly the results, we used the value 1.51 for the 3D
simulations of Sec. VI.

(2) The effective index is the refractive index which is
experienced by the light propagating in a guiding layer. This is
why it is involved in Eq. (18). The effective index is lower than
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FIG. 12. Top and side views of | �E |2 for four modes calculated for the tractoid by 3D FDTD simulations. A source at the central frequency
Re(kR0) = 100.392 is used for the first three columns, and at Re(kR0) = 100.205 for the fourth column, with a frequency width Re(kR0) =
0.3351. Each mode belongs to a different branch of the spectrum of Fig. 11. The bottom row shows a magnifications near the boundary of the
tractoid where the electric field polarization is indicated by black arrows.

the bulk index, since it considers the part of the wave which
propagates outside the guiding layer (that is in air with n = 1
in our case). The effective index can be calculated depending
on the geometry of the device, on the bulk indexes of the
involved layers, and on the polarization. In Appendix V. A of
Ref. [13], we showed that the curvature of the propagating
layer does not modify the effective index for the range of
parameters of our experiments. For instance, the effective

FIG. 13. Comparison of the quantity neffRe(kR0) between the an-
alytic spectrum obtained in Sec. V D using neff = 1 (empty markers)
and the numerical spectrum computed in Sec. VI by 3D FDTD using
the usual effective index formula, for instance, Eq. (4) of Ref. [27]
(filled markers, TE modes in black and TM modes in red).

index is 1.5 at 600 nm for TE modes and a thickness of 1 µm
for the most confined modes.

(3) The group index takes into account the dispersion and
must then be involved in formula (12) which considers the
spacing between different wavelengths. A demonstration is
given in Ref. [29], for instance. A calibration protocol is
detailed in Appendix V.B of Ref. [13] and yields ng = 1.58 ±
0.05 for our experiments.

APPENDIX B: FOURIER TRANSFORM VERSUS
LOMB-SCARGLE PERIODOGRAM

In this Appendix we discuss the sampling issue in Fourier
transform calculations.

The DFT from discrete times tn to frequency f is defined
as

F ( f ) =
N∑

n=1

yn e−2iπ f tn , (B1)

where the data y is sampled at the times tn, yielding a vector
(yn) of size N . Most DFT algorithms assume that the sampling
of the data is regular, which means that tn+1 − tn is a constant.
However, our experimental spectrum is not regularly sampled
for the following two reasons:

(1) The pixels of the spectrometer camera are regularly
spaced, but not the corresponding wavelengths λn because the
grating of the spectrometer induces a nonlinear dispersion.

(2) The Fourier transform has to be calculated as function
of the wave numbers kn instead of the wavelengths λn =
2π/kn, and this relation is not linear either.

Therefore, �n = kn+1 − kn is not constant for the
experimental spectra. In the top panel of Fig. 4(b), we plot
the Fourier transform of the tractoid experimental spectrum

043512-10



EXPLORING NON-EUCLIDEAN PHOTONICS: … PHYSICAL REVIEW A 111, 043512 (2025)

FIG. 14. Schematic for the computation of the propagation mon-
odromy matrix. The black curve is the reference geodesic. It is
parametrized by t such that the black dot corresponds to t = 0. The
blue dotted line is the perturbated geodesic. The initial point at t = 0
is represented by the blue dot and is shifted by a distance ζ (0). The
initial angle of the blue curve with respect to the reference is called
χ , which is equal to ζ ′(0).

of Fig. 4(a) calculated by the fast Fourier transform algorithm
implemented on PYTHON in the scipy library, which corre-
sponds to the modulus squared of formula (B1) assuming a
constant sampling � = (k2 − k1)/N . For comparison, in the
middle panel of Fig. 4(b), we plot the modulus square of ex-
pression (B1) using the actual (kn), which are not equidistant.
Note that the main peak is significantly shifted, revealing an
artifact: the raw DFT (top panel) is peaked at a length which is
longer than the perimeter and thus not consistent with WGMs,
while in the middle panel the length is slightly shorter than the
perimeter, in agreement with WGMs.

The Lomb periodogram PLS ( f ) plotted in the bottom panel
of Fig. 4(b) was computed by the lombscargle routine im-
plemented on PYTHON in the scipy library. Its expression is
given in Ref. [30] and is similar to the formula in the seminal
paper [31]. It is peaked at the same length as the well-sampled
DFT in the middle panel of Fig. 4(b), however, the signal-to-
noise ratio is much better than for the other two procedures.
Therefore, we prefer the Lomb periodogram for analyzing the
experimental spectra.

APPENDIX C: STABILITY COMPUTATIONS
OF PERIODIC GEODESICS

This Appendix deals with the stability of geodesics on the
tractoid surface. First, we derive the monodromy matrix for
propagation P , then the monodromy matrix for reflection R.
Finally, in Appendixes C 3 and C 4 we apply these formu-
las to periodic geodesics of the full and truncated tractoid,
respectively.

1. Monodromy matrix for propagation

In this paragraph, we derive the monodromy matrix P (t )
for the propagation along a geodesic on the tractoid sur-
face. The usual [ζ , sin(χ )] coordinate system along the
unperturbed trajectory is convenient, where ζ is the coordinate
in a direction orthogonal to the geodesic tangent vector and
χ is the deviation from the original propagation direction,
as shown in Fig. 14. The coordinate sin(χ ) corresponds to
dζ/dt , i.e., the local slope with respect to the unperturbed

geodesic. Within this linearized stability analysis, the matrix
P (t ) is defined as (

ζ (t )
ζ ′(t )

)
= P (t )

(
ζ (0)
ζ ′(0)

)
. (C1)

The Jacobi equation [16] describes the evolution of ζ along a
given geodesic as a function of t and reads

d2ζ

dt2
+ K ζ = 0, (C2)

where K is the Gaussian curvature. As it is a constant equal to
−1/R2

0 for the tractoid, the general solution follows

ζ (t ) = ζ (0) cosh

(
t

R0

)
+ ζ ′(0)R0 sinh

(
t

R0

)
. (C3)

Calculating the derivative of Eq. (C3) and comparing it
with (C1) yields

P (t ) =
(

cosh
(

t
R0

)
R0 sinh

(
t

R0

)
1

R0
sinh

(
t

R0

)
cosh

(
t

R0

)
)

, (C4)

which is the monodromy matrix for propagation along a
geodesic on the tractoid. As expected, it has the property
P (t1)P (t2) = P (t1 + t2) and it tends to the propagation matrix
in a planar billiard in the limit of vanishing Gaussian curva-
ture R0 → ∞. Note that det(P ) = 1 and tr(P ) = 2 cosh( t

R0
),

which is larger than 2. Therefore, one of its eigenvalues is
larger than 1 and the propagation is unstable as is expected on
a surface with a negative curvature.

2. Monodromy matrix for reflection

In this section, we derive the monodromy matrix for the re-
flection of a ray on the surface boundary, following Ref. [21].
First, the general case of a given surface and a given boundary
is studied. Then, this result is applied to the specific case of
the tractoid.

a. The general case

The surface is defined by the vector �F (u, v) [cf. Eqs. (1)–
(3)] and parametrized by the variables u and v. The boundary
is a curve belonging to the surface and defined by the vec-
tor �c (t ). The parametrization is chosen such that ‖ d �c

dt ‖ = 1.
This choice simplifies the definition of the curvature of the
curve, which is then the modulus of the second derivative:
κ = ‖ d2 �c

dt2 ‖.
In the vicinity of the reflection point, the incident and

reflected geodesics belong to the plane which is tangent to
the surface. This brings us back to the case of the reflection in
the Euclidean plane. The monodromy matrix for the reflection
with an incident angle χ with the surface normal is therefore

R(χ ) =
( −1 0

2εκt
cos χ

−1

)
, (C5)

where ε = ±1 depends on the relative position of the light ray
and the boundary, and κt is the tangent curvature (also known
as the geodesic curvature). The parameter ε can be defined as

ε = sgn

(
�p · d2�c

dt2

)
, (C6)
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where �p is the momentum of the ray after reflection on the
boundary.

It remains to calculate the tangent curvature κt . To formal-
ize that, we denote �N the unit vector normal to the surface. If
the curvature of the boundary d2 �c

dt2 is collinear to �N , then all
the curvature is outside the tangent plane and thus the tangent
curvature κt is zero. This is the case when the curve �c is a
geodesic. Hence, a reflection on a geodesic is equivalent to a
reflection on a plane mirror in the 2D Euclidean case.

In general, the vector normal to the surface �N and the
curvature of the boundary d2 �c

dt2 are not collinear. The tangent

curvature κt is the modulus of the projection of d2 �c
dt2 onto the

tangent plane:

κt =
∥∥∥∥d2�c

dt2
−

(
d2�c
dt2

· �N
)

�N
∥∥∥∥, (C7)

which is equivalent to

κt =
∥∥∥∥d2�c

dt2
·
(

d �c
dt

× �N
)∥∥∥∥ (C8)

since ( d �c
dt ,

�N, d �c
dt × �N ) is a direct orthonormal basis, and d �c

dt is

orthogonal to d2 �c
dt2 .

b. The case of the tractoid

In this paragraph, we consider the specific case where the
tractoid is cut at a constant coordinate u0. Then, the bound-
ary is a horizontal circle of radius R = R0

cosh(u0 ) . Choosing the

parametrization to satisfy ‖ d �c
dt ‖ = 1, we obtain

�c(t ) =
[

R cos

(
t

R

)
, R sin

(
t

R

)
, R0(u0 − tanh u0)

]
(C9)

d2�c
dt2

= − 1

R

[
cos

(
t

R

)
, sin

(
t

R

)
, 0

]
(C10)

with t ∈ [0, 2π [. Moreover, the unit vector normal to a surface
is given by

�N =
∂ �F
∂u × ∂ �F

∂v∣∣∣∣ ∂ �F
∂u × ∂ �F

∂v

∣∣∣∣ , (C11)

where �F (u, v) = [FX (u, v), FY (u, v), FZ (u, v)] is the surface
equation given in formulas (1)–(3). For the tractoid, it yields

�N = 1

cosh(u0)

⎛
⎝sinh(u0) cos(v)

sinh(u0) sin(v)
1

⎞
⎠. (C12)

Due to rotational invariance, the tangent curvature κt does
not depend on the coordinate v, so we can take v = 0, and
after computation using formula (C8), we find κt = 1

R0
inde-

pendent of u0. Therefore, for any u0, the monodromy matrix
for the reflection is identical to the reflection matrix on a 2D
circular boundary of radius R0.

R(χ ) =
( −1 0

2ε
R0 cos χ

−1

)
(C13)

with ε = +1 for the reflection on the tractoid boundary u = 0,
while it is ε = −1 for u = u0.

3. Stability computations for the full tractoid

In this paragraph, the full infinite tractoid is considered for
which only the periodic geodesics described in Fig. 5 exist.
Using the same notations as in Sec. IV, the total monodromy
matrix for the propagation of the (M, P)-periodic geodesic can
be written

M(M, P) = [M0(M, P)]M (C14)

with M0(M, P) = P (M, P)R(M, P) the product of the propa-
gation matrix and the reflection matrix for the (M, P)-periodic
geodesic. Combining formulas (13) and (14) with the ex-
pression of the matrices in Eqs. (15) and (16), we obtain the
following expressions for P (M, P):

P (M, P) =
(

�1 R0�2
�2
R0

�1

)

with

�1 = 2

(
Pπ

M

)2

+ 1

�2 = 2

(
Pπ

M

)[
1 +

(
Pπ

M

)2
] 1

2

,

and for R(M, P)

R(M, P) =
( −1 0

2
R0

M
Pπ

[
1 + (

Pπ
M

)2] 1
2 −1

)
. (C15)

The computation of the trace of M0(M, P) is then cumber-
some but straightforward and yields tr(M0) = 2. Thus, these
periodic geodesics are marginally stable.

4. Stability computations for the truncated tractoid

In this subsection, we consider a truncated tractoid. Once
again, it is much more convenient to work in the Poincaré
half-plane because the lower boundary at u = 0 and the top
boundary at u = umax are respectively mapped to the straight
horizontal lines y = 1 and y = ymax = cosh(umax). The peri-
odic geodesics studied in Sec. IV B still exist provided that
umax is high enough, i.e., that θM,P is smaller than a maximal
angle θmax = arccos( 1

ymax
). They remain marginally stable.

However, rays can also be reflected on the top bound-
ary and therefore a new type of periodic geodesic appears.
Since the top boundary is also a straight horizontal line, the
reflection angles are preserved. It entails that such periodic
geodesics are composed of a series of identical patterns, made
of circular arcs as illustrated in Fig. 15. Each such periodic
geodesic is uniquely identified by a pair of positive rela-
tively prime integers that will also be called (M, P), M being
the number of reflections on the lower boundary and P the
rotation number. The (4,3) periodic geodesic is sketched in
Fig. 15.

Once again, LM,P is the total length of the (M, P) periodic
geodesics, θM,P the complementary angle of the incident angle
on the lower boundary, and αM,P the incident angle on the
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FIG. 15. Periodic geodesic for the truncated tractoid with (M, P) = (4, 3) in the Poincaré half-plane (top) and on the actual tractoid
(bottom).

upper boundary (cf. Fig. 15 for the notations). After simplifi-
cation, we obtain

LM,P = 4MR0arcsinh

⎛
⎝1

2

√(
P
M π

)2 + (ymax − 1)2

ymax

⎞
⎠ (C16)

θM,P = arctan

(
y2

max − 1

2 P
M π

+ P

M

π

2

)
(C17)

αM,P = − arctan

⎛
⎝ ymax

y2
max−1
2 P

M π
− P

M
π
2

⎞
⎠. (C18)

As previously, the monodromy matrix of the (M, P) periodic
geodesics M′(M, P) can be written

M′(M, P) = [M′
0(M, P)]M . (C19)

The matrix M′
0(M, P) is a product of matrices for propagation

and reflection of the form

M′
0(M, P) = P (M, P)R(M, P)P (M, P)R̃(M, P), (C20)

where P (M, P) accounts for the propagation from the upper
boundary to the lower one or the opposite, R(M, P) for the re-
flection at the boundary y = 1, and R̃(M, P) for the reflection
at the boundary y = ymax. Note that ε = +1 in R(M, P), and
ε = −1 in R̃(M, P).

After cumbersome but trivial calculations, we obtain that
the trace of M ′

0(M, P) is equal to 2. These periodic geodesics
are thus also marginally stable as expected. It should be noted
that all the periodic geodesics discussed in this article come in
families since they are invariant under rotation (that is, a shift
of the starting coordinate v).

APPENDIX D: GENERAL WAVE EQUATION
FOR A SURFACE OF REVOLUTION

In Sec. V, the wave equation is solved using the Poincaré
half-plane representation for its simplicity. Nevertheless, the
wave equation can also be derived directly from the actual
tractoid surface using separation of variables. This method
applies to any surface of revolution (SOR).

The wave equation is the scalar Helmholtz equation

(� + k2)ψ = 0, (D1)

where k is the wave number in vacuum and � is the 2D scalar
Laplacian in any coordinate system. The metric tensor for a
SOR can always be written

ds2
SOR = E (u)du2 + G(u)dv2. (D2)

Therefore, the 2D scalar Laplacian � in the (u, v) local coor-
dinate system is

�ψ = 1√
E (u)G(u)

∂

∂u

⎛
⎝

√
G(u)

E (u)

∂ψ

∂u

⎞
⎠ + 1

G(u)

∂2ψ

∂v2
. (D3)

The general form of the wave equation for a SOR becomes

1√
EG

∂u

(√
G

E
∂u�

)
+ 1

G
∂2
v � + k2� = 0. (D4)

Using the separation ansatz �(u, v) = f (u)g(v), we obtain√
G

E

1

f (u)

d

du

(√
G

E
f ′(u)

)
+ k2G + g′′(v)

g(v)
= 0, (D5)
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which shows that the variables u and v are indeed separable.
The function g must be 2π -periodic, hence g(v) = Ceimv with
C ∈ C and m ∈ Z. Finally, f is the solution of the following
equation:

√
1

EG

d

du

(√
G

E
f ′(u)

)
+

[
k2 − m2

G

]
f (u) = 0. (D6)

For the tractoid, E and G are replaced by their expressions in
Eqs. (7) and (8). The wave equation then becomes

f ′′ − 1

tanh u
f ′ +

(
(kR0)2

cosh2 u
− m2

)
sinh2 u f = 0. (D7)

The following variable and function changes,

η = ln(cosh u) (D8)

f (η) = e
η

2 ξ (η), (D9)

lead to the Schrödinger-like equation (24). Therefore, this
wave equation can be solved with the procedure described in
Sec. V.

APPENDIX E: MATRICES FOR SOLVING
THE SCALAR WAVE EQUATION

In this Appendix, we provide some elements to solve the
scalar wave equation of Sec. V D via an eigenvalue problem.

We start by spatially discretizing the problem. We con-
sider N + 2 equally spaced points 0 = η0 < η1 < · · · < ηN <

ηN+1 = ηmax and we note ξi = ξ (ηi) for i ∈ [[0, N + 1]]. For a
sufficiently small spatial step h = ηN+1−η0

N+1 , the second order
derivative is well approximated by the discretization

d2ξ

dη2

∣∣∣∣
η=ηi

= −−ξi−1 + 2ξi − ξi+1

h2
+ O(h2) (E1)

for i ∈ [[1, N]].

The following matrices are then used:

T = 1

h2

⎛
⎜⎜⎜⎜⎝

2 −1 0 . . . 0
−1 2 −1

. . .

−1 2 −1
0 . . . 0 −1 2

⎞
⎟⎟⎟⎟⎠ (E2)

V = m2

⎛
⎜⎝e2η1

. . .

e2ηN

⎞
⎟⎠. (E3)

APPENDIX F: WEYL’S LAW

The average number of eigenmodes Nsmooth(x) in an energy
interval [0, x] with x := kR0 is given by Weyl’s law [4],

NWeyl(x) = A
4π

x2 − P
4π

x − A
12π

, (F1)

where P and A are the perimeter of the tractoid in units of R0

and the area of the tractoid in units of R2
0, respectively. For the

full tractoid (i.e., v ∈ [0, 2π [), each mode is twofold degen-
erate. We then consider the half-tractoid (i.e., v ∈ [0, π [). In
that case, the perimeter and the area are

P = π

(
1 + 1

ymax

)
+ ln(ymax) (F2)

A = π

(
1 − 1

ymax

)
. (F3)

APPENDIX G: NEAREST-NEIGHBOR SPACING
DISTRIBUTION

The nearest-neighbor spacing distribution P(s) is the
probability to find a spacing of two adjacent eigenvalues
in an interval [s, s + ds]. For a proper comparison with
the Bohigas-Giannoni-Schmit conjecture [26] which makes
statements about universal spectral properties, we need to ex-
tract the k-dependence of the eigenmode mean density, which
is deduced from Weyl’s law (see Appendix F). This process
is referred to as unfolding [32]. It leads to a mean spacing
equal to 1, while the statistical properties of the fluctuations
are preserved.

The unfolded eigenvalues x̃i are obtained by replacing the
eigenvalues xi by Weyl’s law

x̃i = NWeyl(xi ) − 1
2 . (G1)

Finally, the spacings between adjacent unfolded eigenvalues
is given as

s = x̃i+1 − x̃i. (G2)

The nearest-neighbor spacing distribution P(s) is the his-
togram of the spacings s. In Fig. 10(b) it is normalized such
that the area of the histogram is one.
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