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We report on experiments with Möbius strip microlasers, which were fabricated with high optical quality
by direct laser writing. A Möbius strip, i.e., a band with a half twist, exhibits the fascinating property that it
has a single nonorientable surface and a single boundary. We provide evidence that, in contrast to
conventional ring or disk resonators, a Möbius strip cavity cannot sustain whispering gallery modes
(WGM). Comparison between experiments and 3D finite difference time domain (FDTD) simulations
reveals that the resonances are localized on periodic geodesics.
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The search for geodesic curves on manifolds of arbitrary
dimension and metric has been a major driving force in
mathematical physics from its inception at the beginning of
the 20th century [1–3]. The classical work by J. L. Synge
brought this domain in contact with general relativity [4]. In
the 1970s, “trace formulas” were developed that provide a
semiclassical approximation of the spectral density in terms
of a sum over classical periodic trajectories, establishing a
direct link between classical and quantum mechanics [5,6].
The seminal works of Balian [7] and Gutzwiller [8] were
implemented in a broad diversity of physical systems,
including electron transport [9], billiards [10], and nuclear
physics [11]. For open wave systems, the modes are typically
localized on certain classical trajectories [12]. Similarly, the
motion of particles constrained to a compact Riemannian
surface [13,14] of negative curvature is connected to classical
geodesics via the Selberg trace formula [8,15].
Variational principles are of fundamental importance

in physics and also at the origin of the trace formula. The
stationary phase approximation relates the quantum (or
wave) propagator to classical trajectories, which follow
the principle of least action [5]. On curved surfaces, these
trajectories are not straight lines but geodesics, which are
the shortest paths between two points [16]. Surfaces of
arbitrary local curvature provide a fascinating playground for

non-Euclidean optics. Only recently have advanced lithog-
raphy technologies enabled the fabrication of three-dimen-
sional (3D) surfaces with high optical quality and thicknesses
down to 1 μm [17], confining light to propagation within a
quasi-two-dimensional curved layer. Many open questions
can be tackled regarding the structure of the electromagnetic
field in non-Euclidean resonators [18–21], which are also of
relevance in other wave-related research fields like acoustics
[22], hydrodynamics, gravity, or quantum physics.
Some aspects of quantum-mechanical systems can be

investigated with electromagnetic systems thanks to the
equivalence of the Schrödinger and Helmholtz equations.
Prominent examples include billiard systems and their
experimental implementations with microwave resonators
[6], dielectric resonators [23,24], and microlasers [25], with
ramification extending from applied to mathematical phys-
ics [26–28]. Organic microlasers provide an ideal testbed
for studying ray-wave correspondence: with a typical size
in the range of 50–200 μm, much larger than the wave-
length, they operate in the semiclassical regime.
In this Letter, we explore the emerging domain of non-

Euclidean photonics with Möbius strip microlasers fabri-
cated by direct laser writing, see Fig. 1. Möbius strips have
captured the attention of generations of scientists, from
pure mathematics to physical, chemical, and engineering
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sciences [19,29–33]. A Möbius strip is formed by con-
necting two ends of a strip after twisting one end by 180°,
whereas connecting them without twist results in a normal
ring resonator. In spite of its simplicity, it exhibits peculiar
topological properties because it has a single, nonorientable
surface and a single boundary. In particular, a Möbius
microcavity cannot display whispering gallery modes
(WGMs). Normal ring resonators feature high-Q WGMs
that propagate along the outer circular boundary. The trace
formula relates WGMs to periodic ray orbits in the form of
regular polygons with reflections at the outer boundary
[23,34]. However, such classical trajectories do not exist in
a Möbius strip because its boundary exhibits both concave

and convex parts, see Fig. 2(b). We provide evidences that,
instead, its low-loss resonances are localized on periodic
geodesics.
Möbius fabrication and parametrization.—The Möbius

strip was designed by rotating a rectangle by 180° while its
center travels along a circle of radius R. The geometric
parameters are explained in Fig. 1. The width is fixed
W ¼ 15 μm. The radius R varies from 40 to 60 μm, and the
thickness h varies from 1 to 5 μm.
The microlasers were fabricated by direct laser writing

lithography using a Photonic Professional GT system with
negative resist IP-G780 from the Nanoscribe company [17].
The resist was doped by 0.5 wt% pyrromethene 597 laser
dye (by the company Exciton), which is homogeneously
distributed in the bulk host resist [35]. Each cavity is
supported by six circular pylons to avoid coupling with the
glass substrate. A scanning electron microscope (SEM)
image of a Möbius strip microlaser is shown in Fig. 1.
A standard parametrization of a Möbius strip surface

r⃗ ¼ F⃗ðφ; wÞ is

x ¼ Fxðφ; wÞ ¼
�
Rþ w cos

φ

2

�
cosφ; ð1Þ

y ¼ Fyðφ; wÞ ¼
�
Rþ w cos

φ

2

�
sinφ; ð2Þ

z ¼ Fzðφ; wÞ ¼ w sin
φ

2
; ð3Þ

with w ∈ ½−W=2;W=2� and φ ∈ ½0; 2π�, which yields a
Möbius strip like in Fig. 1. A Möbius strip can be twisted
the other way, which corresponds to adding a minus sign
on line (2). We checked that the experiments and their
interpretation are consistent for both chiralities.
Note that this parametrization differs from aMöbius strip

constructed from a twisted paper sheet [36]. Since the latter
can be unfolded to a flat plane, we call it a flatMöbius strip,
see the Supplemental Material [37]. This has important
consequences for geodesics and mode localization, which
will be discussed below.
The Möbius strip microlasers were pumped individually

and with uniform intensity by a beam perpendicular to
the substrate from a frequency doubled Nd:YAG laser
(532 nm, 500 ps, 10 Hz). Their emission was analyzed by a
spectrometer coupled to a CCD camera with an overall
resolution of 0.03 nm. The experiments were carried out at
room pressure and temperature.
The inset of Fig. 3 shows a laser threshold at

5 MW=cm2. This value decreases with increasing size of
the Möbius strip, because of a larger gain volume collecting
more pump light, and is similar to the laser threshold of
3D cavities made of the same laser dye with an equivalent
gain volume [35].

FIG. 1. SEM image of a Möbius strip microlaser with radius
R ¼ 50 μm, width W ¼ 15 μm, and thickness h ¼ 3 μm.

(a) (b)

(c)

(e) (f)

(d)

FIG. 2. Examples of trajectories on a Möbius strip with
W=R ¼ 0.3. The rotation symmetry axis y ¼ z ¼ 0 is indicated
in green (dashed lines or dots). (a) Path along the center line of
the Möbius strip. It is not a geodesic. (b) Trajectory along the
boundary of the Möbius strip. It has to cross over to the
“opposite” side at concave boundary parts. (c),(e) A periodic
geodesic with 11 vertices and length L ¼ 7.031R. (d),(f) Periodic
geodesic 5a with five vertices and length L ¼ 6.732R. The blue
dotted line is the mean position calculated from Eq. (9) for the
wave function in Fig. 6.
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The microlaser light is mostly emitted parallel to the
substrate plane, and the emission mainly originates from
the lateral boundaries of the strip at a near-grazing angle,
see Fig. S9 in the Supplemental Material [37]. This is
observed from all directions, which is consistent with
modes confined inside the Möbius strip and propagating
within this curved and twisted guiding layer.
A laser emission spectrum is shown in Fig. 3(a). It does

not significantly depend on the direction of observation, but
depends on the thickness h [37]. For h ¼ 1 μm, it features a
single series of equidistant resonances, which reveals
information on the mode localization.
Helmholtz equation.—In Cartesian coordinates, the elec-

tric field fulfills the Helmholtz equation

ðΔþ n2k2ÞE⃗ ¼ 0⃗; ð4Þ

where k is the wave number in vacuum and n is the
refractive index, which is 1 outside of the strip and n ≃ 1.5
inside it [38]. As the fabrication method does not generate
stress in the resist, n is assumed to be homogeneous within
the strip. Although it is experimentally evidenced that the
laser emission of a Möbius microcavity is polarized, for the
sake of simplicity, we will only consider a single electric
field component ψ .
To map the Helmholtz equation (4) onto the Möbius

surface, we introduce a local coordinate system (q1,q2,q3)
defined by the local frame (u⃗1,u⃗2,u⃗3) with

u⃗1 ¼
∂F⃗
∂φ ; u⃗2 ¼

∂F⃗
∂w ; u⃗3 ¼

u⃗1 × u⃗2
ku⃗1 × u⃗2k

: ð5Þ

By construction, u⃗1 and u⃗2 lie within the strip, whereas u⃗3 is
orthogonal to it. For the Möbius strip considered here,
ðφ; wÞ ¼ ðq1; q2Þ.
We deal with the finite, but small thickness (h ¼ 1 μm)

of the Möbius strip by introducing an effective refractive
index [39], assuming that the direction q3 perpendicular to
the strip can be separated from the directions ðq1; q2Þ
within the strip. Solving the equation in the q3 direction
yields the effective index for the phase velocity of a wave
guided within the Möbius strip. We extend the effective
index neff , originally introduced for flat layers, to a curved
layer following Ref. [40]. The derivation is described in the
Supplemental Material [37], where it is shown that the
correction due to the curvature is negligible for the range of
parameters considered in the experiments.
With these approximations, the wave equation reduces to

a two-dimensional Helmholtz equation within the strip,

Δsψ s þ n2effk
2ψ s ¼ 0; ð6Þ

where ψ s depends only on ðq1; q2Þ. The Laplace operator
Δs in the curvilinear coordinate system is given by

Δsψ ¼ 1ffiffiffi
g

p
X2
i;j¼1

∂
∂qi

� ffiffiffi
g

p
gij

∂ψ
∂qj

�
; ð7Þ

with gij ¼ ðu⃗i · u⃗jÞ as the metric tensor, ðgijÞ as its inverse,
and g ¼ detðgijÞ.
Based on this approximation [41], we consider the

propagation of rays with an effective index neff in the
curved surface defined by ðu⃗1; u⃗2Þ. Since the radius R
and the width W of the strip are large compared to the
wavelength, a semiclassical approach is valid. The resonant
modes should hence be related to periodic geodesics.
Geodesics.—A classical trajectory γ on a surface can be

represented by a path qðsÞ ¼ ½q1ðsÞ; q2ðsÞ� with s ∈ ½0; 1�;
qð0Þ is the initial point and qð1Þ is the final point. This
trajectory γ is a geodesic if its length is stationary with
respect to variations of the path qðsÞ while maintaining
qð0Þ and qð1Þ. The length is given by [16]

Lγ ¼
Z

1

0

ds

�X
i;j

gij½qðsÞ�
dqi
ds

ðsÞ dqj
ds

ðsÞ
�
1=2

; ð8Þ

with i; j ¼ 1, 2. Since the geodesics on the Möbius strip
cannot be derived analytically, we calculated them numeri-
cally using this variational principle [37].
A geodesic is periodic if qð0Þ ¼ qð1Þ and dq=dsð0Þ ¼

dq=dsð1Þ. In contrast to the flat Möbius billiard [37], all
periodic geodesics have at least one reflection on the
boundary and are isolated [42]. Another striking difference
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FIG. 3. (a) Experimental laser spectrum of a Möbius strip with
R ¼ 50 μm and h ¼ 1 μm (1 s exposure). (b) Normalized Fourier
transform (from wave number k to optical length) of the spectrum
in (a). The vertical lines are at the optical lengths of half the
perimeter (dashed blue line) and of the geodesic 5a (black dotted
line) for ng ¼ 1.58. Inset: experimental threshold curve for a
Möbius microcavity with R ¼ 50 μm and h ¼ 3 μm.
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is the sequence of reflections on the boundary. In the flat
Möbius billiard, the geodesics have consecutive reflections
on opposite sides [43]; that is, a reflection with q2 ¼ þW=2
is always followed by one with q2 ¼ −W=2 and vice versa.
Such periodic geodesics exist in the Möbius strip as well,
but only if they have at least 11 reflections, see Fig. 2(c).
As illustrated in Fig. 2(d), it also hosts periodic geodesics
with consecutive reflections on the same side, a feature
specific to the 3DMöbius strip. The geodesic of Fig. 2(d) is
called “geodesic 5a” to distinguish it from other periodic
geodesics with five reflections and similar length. Here-
after, we will compare it to experiments and numerical
simulations.
Spectrum analysis.—The equidistant resonances in

Fig. 3(a) indicate that the lasing modes are longitudinal
modes located along a single classical trajectory or a few
trajectories with similar lengths. To verify this conjecture,
we analyze the spectra.
The distance Δk between two adjacent peaks is related

to the geometric length L of this classical trajectory via
Δk ¼ 2π=ðngLÞ where ng is the group refractive index [44].
Δk can be inferred from the Fourier transform, as illustrated
in Fig. 3(b), which shows peaks at the optical length ngL and
its harmonics. Hence we can determine the geometric length
L if the group refractive index ng is known. It is deduced
from the effective index and contributions from the material
dispersion of n and modal dispersion of neff . The three terms
and their uncertainties are described in the Supplemental
Material [37] and yield a group index of ng ¼ 1.58� 0.05.
Figure 4 shows the measured optical lengths for

twelve Möbius microlasers with radius R ¼ 50 μm and
thickness h ¼ 1 μm. Their clear disagreement with half the
perimeter evidences that the lasing modes do not propagate
along the cavity boundary as WGMs would do. In contrast,
the agreement is very good for the geodesic 5a. A few other

geodesics are also consistent with the experimental data.
Some geodesics can be excluded because their length is too
short or too long. This includes, for instance, all the
geodesics with consecutive reflections on opposite sides,
like the one in Fig. 2(c).
Wave functions.—Numerical simulations were per-

formed with a homemade 3D finite difference time domain
(FDTD) code for R ¼ 10 μm, W ¼ 3 μm, h ¼ 150 nm,
and n ¼ 1.515. The aspect ratio W=R is the same as in the
experiments. For these parameters, there is a single exci-
tation in the vertical q3 direction, but there exist several
modes in the transverse w direction. The spectrum plotted
in the inset of Fig. 5 features several branches of equidistant
resonances. The Q factors of the low-loss modes (upper
branch) are as high as 200 000. The spectrum is shown on a
broader range in Fig. S5 of the Supplemental Material [37].
A typical wave function is plotted in Fig. 6. Because of

the twofold rotational symmetry of the Möbius strip with
respect to the x axis, the wave function must be odd or even
with respect to rotation by 180° about it, i.e., about the
green dot in Fig. 6(d). Consequently, the wave must cross
from the upper side of the strip to the lower side, in contrast
to a WGM, which would evolve along the boundary.
This wave function exhibits maximal intensity close to

the boundary at positions coinciding with the reflections of
the geodesic 5a, which is shown as a red line. To quantify
the agreement, the mean position of the wave function
along the strip width is calculated for each φ value,

hwiðφÞ ¼
RR

Half−plane wρðw;φ; q3Þdwdq3RR
Half−plane ρðw;φ; q3Þdwdq3

; ð9Þ

where ρ ¼ 1
2
ϵ0ϵrjE⃗j2 þ 1

2
μ0jH⃗j2 is the energy density of the

electromagnetic field. This mean position is plotted in
Fig. 2(f). The agreement is very good, in particular, for the

FIG. 4. Comparison of the experimental optical lengths for
twelve Möbius microlasers with radius R ¼ 50 μm and thickness
h ¼ 1 μm (red dots) with the optical length of geodesic 5a
(continuous blue lines) and of the half perimeter (dashed black
lines). The lower and upper lines correspond to the lower
(ng ¼ 1.53) and upper (ng ¼ 1.63) limit of the group index ng.
Inset: the dashed line indicates the perimeter.
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FIG. 5. Length spectrum derived from FDTD simulations for a
Möbius strip with R ¼ 10 μm, W ¼ 3 μm, h ¼ 150 nm, and
n ¼ 1.515. The dashed arrow indicates half the length of the
perimeter. The solid arrows indicate the lengths of several
periodic geodesics with 4 to 6 reflections. The inset shows part
of the simulated spectrum, where the blue circle indicates the
mode plotted in Fig. 6.
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reflections on the boundary, further corroborating our
claim that the modes are localized on periodic geodesics.
More examples of wave functions are presented in the
Supplemental Material [37].
The length spectrum in Fig. 5 is a Fourier transform of

the simulated spectrum; see [37] for more information. It is
peaked at the lengths of the periodic geodesics that were
identified from the experiments and the wave functions,
whereas there is no significant peak at the position of the
half perimeter.
Conclusion.—Organic Möbius strip microlasers are

investigated as nontrivial examples of non-Euclidean pho-
tonic structures fabricated by direct laser writing. We show
that Möbius strip microlasers do not exhibit WGMs, in
contrast to conventional ring cavities. Instead, their lasing
modes are located on periodic geodesics. These findings
are based on experiments, 3D FDTD numerical simula-
tions, and on a dedicated algorithm to systematically
identify the periodic geodesics. Our analysis is based on
an effective index approximation that reduces the electro-
magnetic wave equation to a two-dimensional scalar
Helmholtz equation. A future objective will be the deriva-
tion of a vectorial equation for the modes in curved surfaces
and an in-depth investigation of the nontrivial polarization
features [45] of such microlasers. This work opens the way
to further explorations of non-Euclidean photonic devices.
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