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Comparison between 6-band and 14-band 4p formalisms in SiGgSi heterostructures
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We report on a comparison between a 14-band and a 6-bamanodel to describe the valence band of
pseudomorphic SiGe/Si heterostructures. A strong variation between both models is observed for the descrip-
tion of the valence band dispersion and for the calculation of the intersubband dipolar matrix elements for
in-plane wave vectors as small as 10% of the Brillouin zone size. We show that the 6-band formalism
overestimates the amplitude of the intersubband absorption by a factor of 2 for light polarized in the layer
plane. The origin of the polarization of the intersubband transitions is discussed and the limits of both models
for the calculation of the energy band diagram and dipole matrix elements are outlined. We finally show that
the usual axial approximation procedure, which is often used to build a cylindrical 4-band or 8-band Hamil-
tonian, cannot give a cylindrical 14-band Hamiltonian.
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[. INTRODUCTION In the case of SiGe alloys, treetype andp-type conduc-
tion bands are not far in energy and both bands exhibit in-
Infrared transitions in SiGe/Si low-dimensional hetero-teraction matrix elements with the valence band of the same
structures have attracted considerable interest in recent yeamsder of magnitude. It is therefore necessary to introduce a
The intersubband transitions in quantum wells and the intral4-bandk-p formalism for SiGe/Si quantum wells to ac-
band transitions in quantum dots have an important potentiaiount for the admixture between the firstype and the
for optoelectronic devices operating in the midinfrared orp-type conduction bands on the valence b&nthe 14-band
far-infrared spectral rangé€. Midinfrared photodetectors formalism describes the whole conduction band and the va-
using quantum wells or quantum dots epitaxially grown onlence bandqI'y, I'g, I'7, rg, I';]. In this formalism,
silicon have been demonstratttiMore recently, intersub- the influence of the first-type andp-type conduction bands
band electroluminescence in cascade structures has been o#r the valence band is included exactly. It appears that the
ported, opening the route to the realization of a silicon-basegthteraction between the-type conduction band and the
midinfrared or far-infrared lasérA large band discontinuity ~p-type valence band favors intersubband transitions parallel
between silicon and strained SiGe alloys is observed in théo the layer plane while the interactions of betrandp-type
valence band, implying that the intersubband or intraban@onduction bands with the valence band have nearly equal
optical processes involve different hole stafesavy holes, contributions to the oscillator strength parallel to the growth
light holes, and spin-orbit split-off bandViany of the infra-  axis. Since the 14-band formalism accounts for the interac-
red optical experiments on strained SiGe quantum wells otion between the conduction band and valence band exactly,
qguantum dots reported so far are thus interpreted in thé& should be more accurate than the 6-band model. Signifi-
framework of a 6-bané - p calculation® This formalism cor-  cant differences exist between both models. We show that the
responds to a resolution of the Luttinger Hamiltonian thataxial approximation which is usually used in the 6-band
describes thdy andI'; valence band$.The main advan- theory is not valid with the 14-band model. The axial ap-
tage of this approach is to avoid the computation of the conproximation is valid when we consider the influence of an
duction band while taking into account its influence on thes-type conduction band because it induces an isotropic effect
valence band energy diagram and on the optical intervalengen the valence band. It is not the case in the 14-band model
band transitions. The influence of the conduction band on theince thep-type conduction band has an anisotropy effect on
valence band energies is introduced by second-order pertuthe valence band and we see no analytical method to build a
bation with the Luttinger parametefsThe influence of the 14x 14 Hamiltonian with a cylindrical symmetry.
conduction band on the intervalence band optical matrix el- In this work, we report on a detailed comparison between
ements is obtained by first-ordér- p perturbation on the the 6-band and 14-band formalism for the calculation of the
valence band stat&sThe introduction of the first-orddt-p ~ energy band diagram and the dipolar matrix elements of
perturbation to account for the conduction band states can H8iGe/Si heterostructures. We show that important differences
used to calculate the optical matrix elements of intersubbandre obtained for the subband energies in quantum wells at
transitions in quantum welfsOne important consequence of wave vectors smaller than 1 nrh along with strong varia-
the effect of the conduction band on intersubband optications in the dipolar matrix elements when the in-plane wave
transitions in quantum wells is the possibility to observe op-vector increases, leading to significant differences in the cal-
tical transitions for light polarized parallel to the layer plane,culation of the absorption spectrum pdoped structures.
as evidenced in several absorption experim&h&ince the We find that the 6-band model gives higher absorption am-
interband separation between valence and conduction statphtudes for the HH— HH, transition(by 20% and for the
near thel” point is large in Si and Ge materials, it is justified HH;—LH transition (factor of 2 as compared to the ab-
to take into account the conduction band by a perturbation a$orption amplitude obtained with the 14-band model in
first order on the valence band states. heavily doped structures.
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This article is organized as follows. In Sec. Il, the 14- andp-type conduction band on the valence band energies. Sec-
6-band models are first described and their results are conond, we attempt to quantify the limit of both 6-band and
pared for the case of bulk silicon. We point out the limit of 14-band models.
validity of the 14-band model to describe the valence band,
because of the uncertainty of the input parameters which are 14-band and 6-band kp formalism
involved in describing the nonparabolicity of thaype con-
duction band. While the 14-band model does not allow us to
describe accurately the dispersion of the conduction bands H.U©=EOy(© 1)
near thel’ point, we discuss its influence on the calculation K=k =k
of the valence band energy diagram for wave vectors close tohere
the center of the Brillouin zone. We finally quantify the limit

Thek-p equation we solve in the present worRs

of both models and show that the 14-band model is still more . P LU+ h VUA N h KDt S
accurate than the 6-band model. In Sec. Ill, we provide a 'k~ 2m, 4m202( p)o mo P 2mg
detailed description of the valence band of a strained 0 )

Si/SiysG&y 5/ Si quantum well. We present a comparison be- )
tween both formalisms, focusing on the energy band diagrarfilo iS the free electron mas$, is the reduced Planck con-
and on the dipolar matrix elements. Both intersubbandftant, anct is the speed of light in vacuurtl is the periodic
(HH,—HH,) and intervalence bandHH;—LH,(SQ,)] potential of the unstrained crystal awd= (o, oy, o,) are
transitions are studied. We point out the strong variations othe Pauli matrices. Th&J{’ represent the Bloch function
the energies and of the dipolar matrix elements between thepinors in the unstrained crystal. As usual keependerit
6-band and 14-band models for wave vectors smaller thagpin-orbit coupling term #%/4méc?) (VU xk) - o, has been
10% of the Brillouin zone size, in particular for the case of neglected. In the following, we apply the p formalism to
the HH,—LH,(SO,) transition. In Sec. 1V, a discussion of the 14-fold space of the valence bad; ,I'; ], the lowest
the axial approximation is finally presented. I'7, and the second conduction bandsSg ,I'g]. These
bands and the associated parameters are schematically illus-
trated in Fig. 1. In the case of the 6-band model, khe
equation(2) is projected onto the 6-fold space of valence
In this section, we first describe both 14-band and 6-bandbands[I'g , I'; ]. TheT" bands are defined in an orthogonal
formalisms and we present a comparison between both fobase of Bloch states &=0 given in Table I. This set of
malisms for the case of bulk silicon. We show the limitation functions diagonalizes the spin-orbit coupling represented by
of both models to describe the valence band. The main issuée third term in Eq(2). The notations) and J, in Table |
of this part is to show the strong nonparabolicity effect of therepresent the total angular momentum and its projection

Il. 14-BAND AND 6-BAND k -p FORMALISMS
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TABLE I. Luttinger-Kohn periodic amplitudes used in both 14- andréght) band models. The indices
— and + design, respectively, the conductidieft) and valenceright) states whilg/+) and|—) are the
stype spin-degenerated conduction states. The set of wave functions for the 6-band model is the same
without the conduction states. The phases are chosen to give real matrix elementk -tp Hemiltonian.

Iy J=3J0=+3+3 Iy =3 3=+3%+}
—3)=|i *i(x +iYe)T |+.3)=]i fi(XHY)T
12/ \/E C C 12) = \/E
1 1
I-.4y= i[—%(xcﬂvc)w@za > +,5=]i —%<X+im+@m

|

1 1
T(Xc_iYC)T"‘ \/gzcl > |+.—3)= i[%(x—iY)T-i-\/ng

> [+,-3)= i{%(X—im >

Ty J=% J,=+; I7 J=3 J,=*3

1
E(Xc—iYc)l

1 1
|—,+)=‘i[ﬁ(xc+iYc)1+\/§ch > [+,+)= i[ﬁ(XHY)H\EZT >
1 1
- >=‘i Fxfivmf@za > +,-)= i{ﬁ(an@a >
I; J=% J,=+;
|+)=[ST)
|—)=Isl)

along thez growth axis, respectively. The first index  pand, without the valence and thig bands, through ther;
(—) denotes the valendgonduction states which are even | yttinger-like parameters. In EqB3) of Appendix B, we
(odd) under the inversion symmetry operator, respectively. 'ngive the relation between tha.; parameters angc; param-
. . j Cj

Table I, the function¥, Y, Z, S Xc, Yc, andZc are defined  eters which include the whole remote band effect on the
as the eigenstates of thel, Hamiltonian: Hy=p®2my  [1; T'.] conduction bands. In this work we consider the
+U. These functions are assumed to be real and have, re:yype conduction band without any remote band influence.
spectively, I's symmetry K, Y, Z), T, symmetry (S  |f the remote band effects are not taken into account in the
and I’y symmetry K¢, Yc, Zc) of the cubic symmetry off-diagonal terms inside thd'g , I'; ] subspace, thp-type
groupOp, . conduction band is parabolic like. As will be explained be-

The 6x6 and 1414 k-p matrices are given in Appen- |ow, a parabolic dispersion of thetype conduction band in
dix A by Eg. (A1) and in Appendix B by Eq(B1), respec-  pulk Si and Ge would be quite different from the well-known
tively. In the case of the 14-band formalism, two key pointsdispersiof® especially in thg100] direction ofk space. At
are to be clarified. The first point is related to the values ofirst order, one can assume that a nonparabolic contribution
the modified Luttinger parameterg (j=1,2,3) which ap- to the conduction band will not influence the valence band if
pear in the off-diagonal terms inside the; , T'5 | subspace. it is weak as compared to the interband energy separation.
The values ofy| are chosen to highlight the effect of the This assumption can be illustrated with a simple two-band
whole remote bands on the valence bands, except for the firstodel. Thek- p Hamiltonian without the spin-orbit coupling,
stype andp-type conduction bands which are included ex- 5 522
actly. The values ofyj’ are deduced from the well-known ,_h'(_HUJr —Kpt —
Luttinger parametery; as presented in Appendix [Bee Eq. Mo 2mg

(B2)]. We note that the expression of the paramatpris can be written inside theU, Uy) basis as
equivalent to the one used in the 8-band mddethich is,

for instance, extensively used to describe [thig, I'g, I'7] 2Kk2

valence and conduction bands in GaAs heterostructures. The Egte(k)+ oma Pk

second key point is related to the values of the off-diagonal Hl’(: 0 oo | s 3)
terms inside thg¢I'g, I'g ] conduction bands. These terms Pk S

include the remote band effects on thdype conduction 2mg
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whereU andU,, represent the conduction and valence band 55
states, respectivel\E is the interband separation energy (a)
defined asH|Uc)=(Eg+#2k2/2mg)|Uc) with HiUy) S
= (h%k?12mg)|Uy), andP= (A/mg)(Uc|p,|Uy). Heree(k) % 45| "s"band
is an energy which is referred to as the nonparabolicity of the =
conduction band induced by the remote band effect. For %° al
small wave vectors, we havek<Eg and at third order of s "p" band
perturbation the valence band energy can be written as 3.5
Ep € ﬁzkz
Ev=|1 EG(l Eg)|2m,’ @

where Ep is related to the matrix elemenP by Ep
=(2my/h?)P?. Equation(4) is equivalent to the Kane equa-
tion, which gives the effective mass of holes, corrected by a
term depending oa (k). For a given wave vectd, if Eg is
large as compared to the nonparabolicity contribu&gky),
we can neglect the effect of the nonparabolicity of the con-
duction band on the valence band. While the nonparabolicity
of the p-type conduction band is strong near thg@oint in Si
and Ge materials, the use of the 14-band Hamiltonian with-
out the}cj which includes the remote band influence is thus
limited to a given range of whereEg;> (k). According to
Eq. (4), a variation of 10% is observed for the energy of the FIG. 2. (a) Conduction band an¢b) valence band of bulk sili-
valence band between the case Eg/10, which is reason- con calculated with the 2414 matrix including theyc; as dashed
! lines and without thézcj parameters as solid lines. The j account

Energy (eV)

able following Ref. 13, and the cage=0 atk=1 nm ".
We now turn to the influence on the valence band of theor the remote band influence on tpetype conduction band. The
14X 14 matrix including the effect of the remote bands onvalence band is influenced by tpetype conduction band very rap-
the p-type conduction band as compared to the same matrikily as the wave vector increases.
without taking into account the influence of the remote
bands. Figure 2 shows the conduction b&adand valence gnce 1o determine the limit of validity of the 6-band and
band (b) energy diagrams of bulk silicon obtained with the 14 hand models for the valence band calculation neai'the
14-band model. The figures present a comparison betwe%bint_
Hi*** without accounting foryc; (solid line) and withyg; The second-order perturbation used in the 6-band model
(dotted ling. Since the conduction band parameters involvedo include remote band effects on valence states through the
in this 14X 14 Hamiltonian are not well known, we chose to Luttinger parameters is justified when thep coupling with
test their influence by taking values f; which leads to a  other bands is weak as compared to the interband separation.
flat p-type conduction band by putting.;= 0 [see Appendix In the two-level Hamiltonian of Eq.3), this situation corre-
B, Eq.(B3)]. We observe that thiedependence of thetype  sponds toPk<Eg or k<EgX \/2m0/h2Ep whereEg is the
conduction band influences very rapidly the valence bandlifference of energy at th€ point andEp the momentum
dispersion curve when the wave vector increases. An energyatrix elements betweebl. and U. If we consider an
variation of 8% is found at 1 nm' for the heavy-hole band upper valuek;,= & (Eg X v2mo/%%Ep) for the range ok
when we take into account the influence of the remote bandahere the 6-band model is valid, a numerical application
on the p-type conduction band. We note that there are nawith Eg=3.4 eV andEp=25 eV gives a wave vector limit
experimental cyclotron resonance data available for the coref 0.34 nm 2.
duction band parameteng:; near thel’ point as opposed to Figure 3 shows the valence band dispersion of bulk sili-
the case of the valence band since electrons in bulk Si ancbn performed with the 6-bangsolid line) and 14-band
Ge do not fill thel’ conduction band states. It is in contrast (dashed ling models in thg100] direction. It clearly shows
with direct band gap materials where the parameters of ththat the 6-band model does not describe the dispersion like
conduction band can be experimentally measured. The accthe 14-band model and that variations between both models
racy of the 14-band model to calculate the dispersion curvemcrease quadratically with the wave vector. While the 14-
of the valence bands thus depends on the type of investigatdzhnd model is limited by the description of tpeype con-
semiconductors. In order to avoid the uncertainty with theduction band nonparabolicity, the 6-band model is limited by
14-band model for Si and Ge due to the conduction bandhe validity of second-order perturbation. As both models
nonparabolicity, a more extended formalism which includegpresent different types of limitation to describe the valence
remote band states like thep’s* method would be band, we attempt to quantify their limit and to define which
necessary’ Such an extended model can be used as a refepf the 6-band and 14-band formalisms is more accurate by
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25 to the uncertainty in the input parameters is thus not so
0 strong. This is in agreement with the assumption that the
20? remote bands are so far in energy that their effect can be
%_02 15% neglected in the range of wave vector we have considered
e S (2 nm1).** We can thus conclude that the 6-band model is
b 10-8 more limited than the 14-band model despite the lack of
g -04 . > knowledge of the conduction band parameters. In the follow-

. 5 ing, the 14x 14 matrix will be used without including remote

0.6 L A I WA PN band effects on thp-type conduction band. The comparison

0 0.5 1 1.5 2 of the sp®s* with the 14-band formalism for the case of the

k,, [100] nm™* conduction band is presented in Figby The agreement is

less satisfying as compared to the valence band but the dif-

FIG. 3. Valence band of bulk silicon calculated with the 14-band]c . t sianifi t for the d ot f th |
model as dashed lines and the 6-band model as solid lines. Relativgrence IS not signimcant for the description o e valence

variations between the different subbands are depicted in the righif'tersubband dipole matrix elements as checked by modify-
scale. ing arbitrarily the values ofy;.

using a comparison with the description of the valence band!!- 6-BAND AND _14'BAND k -p METHOD FOR STRAINED
as presented in Ref. 14. In Fig(a# we show the valence SiGeSi QUANTUM WELLS

band energy diagram obtained with thg’s* model as a We will illustrate below the differences between the
solid line as compared with the energy diagram obtaineg_pand and 14-band models for the case of a strained
with the 14-band Hamiltoniagdashed lingwithout includ- g Gg ./Si quantum well. This case is of interest since it
ing the remote band influence on tpdype conduction band o pe used as a first approximation to describe the optical

and the 6-band modetiotted ling. We obtain a good agree- rgnerties of the self-assembled islands obtained by nomi-
ment between the 14-band and thg’s* model while the nally depositing pure Ge on &.

difference with the 6-band model appears clearly. The limi-

tation of the 14-band model to describe the valence band due A. Valence band dispersion

To describe the valence band dispersion of a strained

0 (@) SiGe/Si quantum well grown along theaxis on a(001)
silicon substrate, we solve the equation
Hy=[H+HstV(2)]y=Ey, )

whereV(z) is the band offset potential which is diagonal in
both 14-14- and 6-6-dimensional spinor basis. The strain po-
tential is included with the Hamiltoniail g following the
procedure described in Ref. 16. For a quantum well grown
on a[001]-oriented substrate and thin enough to elastically
accommodate the strain due to the lattice mismatch, the
strain in the(001) plane is

Energy (eV)

5.5 asi~ dsiy_,Ge, ©
Exyx—=&Eyw=— &\ =/,
b) SO W,
Sk 1 .
=~ _ = whereas; andas;, e are the lattice constants of the sub-
L 45 _ = strate materia{Si) and the well material ($i ,Gg,), respec-
B
on
E 4 TABLE I1l. This table gives the experimental parameters in-
= 35 volved into the strain potential for Si and Ge. The lattice parameters
: are given in A. The deformation potentials taken in Hhe Hamil-
S P A P M arare tonian (@c for the conduction band and,, by for the valence
0 05 1 15 > bands are given in eVag=ac—ay is the gap deformation poten-

k [100] nm’* tial. C4; and C,, are the elastic moduli given in MPa. All param-
" eters are taken from Ref. 27 except lyr (Ref. 17. We use a linear

. . . 5
FIG. 4. (a) Valence band diagram obtained with t8@°s*  jnserpolation to obtain the strain parameters for a SiGe alloy.

model as solid lines compared with the 14-band Hamiltonian
(dashed ling without including remote band effect on tipetype a(A)
conduction band and the 6-band mo¢tidtted ling. (b) conduction
band obtained with thep®s* (solid line) and the 14-band model Si 5431 -510 0 —-510 233 1675 0.65
without including the remote band effect on thaype conduction Ge 5658 —9.5 0 —-95 208 1315 0.494
band(dashed ling

ac ay ag by Cu Cyp
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14-band model 6-band model
1"7_
A
)N/Cj - -
Iy ;I
A (T ¢) FIG. 5. Band offsets for va-
lence and conduction bands in-
cluding the diagonal elements of
the strain potential in the set of the
Ep spinor basis given in Table I. Left:
14-band model. Right: 6-band
Epx model.
¥ Yi
AE, AE
+
A A / T, oy
S T,

r,’

tively. The condition of zero stress in tiredirection gives lﬁkH(Z)=En6 or 14Xnka(z)|n> WhereXn,kH(Z) is the envelope

e27=61= ~2(C1a/Cri)ey While e,y =ey,=e,=0. Here  qneiion. The indexn refers to the stateg+,J,) given in

Cy; and Cy, are the elastic stiffness constants. The straifrapie | |n order to account for the spatial dependence along
HamiltonianH s induces a shift and a splitting of the confin- 4, axis of the band parametea$z) and for the boundary
ing potential seen by the carriers. The strain HamiltonianConditions the second-order termskinin the 6x 6 and 14
matrix elements can be obtained from tkep matrix ele- ' ) ] oo 4 ]
ments by symmetry considerations and substitution of the<14 kA-p matrices, like a(z)k;, are Ieplaced with
corresponding term& kg—e,5 With @,8=x,y, z!® The  k,a(2)k,,"**while the linear terms like a(k) are replaced
Hs matrices used for the calculation of the energy band diawith (1/2)[ Rza(Z) +a(z) RZ]_lg Equation(5) is solved using a
gram with the 14-band model and 6-band model are given b¥ourier-like series expansion of the envelope function
Eq. (B4) of Appendix B and Eq(A2) of Appendix A, respec- Xnx(2), @ method appropriate to account for the boundary

tively. The parameters involved into the Hamiltonidg are .4 ditionst® To describe a quantum well centered 42, an
given in Table II. Figure 5 shows the band diagram atlthe ¢ficient and suitable basis of function

point of a strained Si/gkGe, 5/ Si quantum well. In this fig-

ure the strain effect on the band edge energies was taken into 2 (mm

account. The origin of energy is taken at the top of the lom) = [S'V‘(TZ)

heavy-hole band barrier. The numerical values for the Si and

SipsGey s band parameters used in this work are given inhas been used to project the envelope functioryag (2)
Table lll. In the following, the results are illustrated for the :Er’;‘]=1C$kH|(Pm>- By using this set of basis, the envelope

case of a 5-nm-thick Si/giGe s/Si quantum well. The fynction is imposed to be null =0 andz=L. The enve-
heavy-hole valence band offset for the strained mat&ita}  |ope function is by this way sampled with the fitsteigen-
is assumed to be 350 méV/Using the usual assumption in functions of a large well of width_ with an infinite barrier
the envelope-function approach that the basisJ,) is the  potential. The width of the large welll and the numbeN of
same in both materials Si and SiGe, we replageby the  functions|e,,) are taken such that the bound states are not
momentum operatok,=—i d/dz in the H, Hamiltonian. influenced by the infinite barrigiof the large well and by
The solution of Eq(5) at a givenk|| is written in the form  checking simultaneously the numerical convergence of the

TABLE Ill. Experimental band parameters of bulk Si and SiGe alloys used in this work. The Luttinger
parametersy; are taken from Ref. 8see also Ref. 17 The energies gaig andEgc, spin-orbit splittingA,
and A in eV are taken following Ref. 27. The fixed values of the Kane en&gyand Epy in eV are
considered as identical in the well and in the barrier.

Y1 Y2 V3 Epx Ep Eg Ecc A Ac
Si 4.285 0.339 1.446 15 25 4.185 —-0.775 0.044 0
SipsGey s 5.9 0.9 2.0 15 25 2.54 0.725 0.165 0.093
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vestigation was performed for in-plane wave vectors along

0.3 the[100] direction. The following ideas remain valid for the
~ other directions of the wave vector in the layer plane.
L 92 The valence band energy diagram of the 5-nm-thick
E& T strained SiGe/Si quantum well obtained after solving ©&4.
[Lé is shown in Fig. 6 for th¢100] direction. The 14- and 6-band

0.1

model solutions are shown in dashed and solid lines, respec-
tively. The energy of the first confined states are in good
\ ) agreement between both models, but as the energy gets
PRI S TS S SR S A . .
0 02 04 06 08 1 closer to the barrier edg@® meV), a discrepancy between
k [100] nm’! both models is observed. This behavior is associated with the
7 increase of the wave vector when the quantified kinetic en-
FIG. 6. Dispersion of the hole subbands in [i80] direction of  ergy alongk, increases. As the confined states are related to
the k space. The dispersions as dashed and solid lines are obtainp&gekZ wave vectors, the variation of the valence subband
with the 14-band and 6-band formalisms, respectively. From top tcénergies obtained in quantum wells can be attributed to the
Egtto;n, the s;tﬁandsbgorrgspond to the HlH1(SG). HHz.  jitferences in valence band dispersion found for bulk sys-
2(SG,), and Hi subbands. tems for values ok of 1-2 nm . Figure 7 shows the pro-
20 . o . jection of the wave function componengs o(z) correspond-
energies” By applying the HamiltoniarH containing the  jng to each level obtained & =0 with the 6-band model.
potentialV(z) and the operatdt, to the 14-(6-) dimensional  According to the wave function representation, the confined
basis |+,J,) and developing each term into the states are indexed from the top to the bottom as; HH
N-dimensional basi$e,,), the resolution of Eq(5) is con-  LH,(SQ,), HH,, LH,(SG,), and HH;. Because the light-
verted into a 14 (6) <14 (6)N matrix eigensystem prob- hole and spin-orbit split-off states are strongly mixed, we
lem inside the 146) N-fold |=,J,)®|¢n) new basis. After denote the state “LKSO)” the “light-hole-like” state or, for
diagonalizing the 14 (@Yx14 (6)N matrices at several short, “LH.”
point of the k,,k,) in-plane space, we obtain a correspon-  The admixture of valence and conduction bands can occur
dence of the band diagram of the hole-confined states witht k =0. Figure 8 shows each componept(z) of the
the corresponding wave functions. Since—as will be showrwave function as obtained with the 14-band model. It ap-
below—the axial approximation as proposed in Ref. 21 ispears clearly that the heavy-hole states are exclusively mixed
not possible with the 14-band formalism, the numerical in-with the p-type conduction states and not with tkaype

0

|+,J_r%> |+,J_r%> |+ +)

FIG. 7. Envelope function
Xno(2) representation of the hole
confined states in a 5-nm-thick
SipsGey 5/ Si quantum well calcu-
lated with the 6-band formalism.
The corresponding levels are from
top to bottom HH, LH.(SO),
HH,, LH,(SG,), and HH. We
note that ak =0 the heavy-hole
subbands are not mixed, while the
SO and LH subbands are strongly
mixed. This mixing is due to both
coupling inside thek-p Hamil-
tonian and theH g Hamiltonian.
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) 1=23) 152) 1) Iwned) Insd) Ins)

FIG. 8. Envelope function
LH, A /L Xno(Z) representation of the hole
confined states in a 5-nm-thick
~ Siy.5G&y 5/Si quantum well calcu-
lated by the 14-band formalism.
The corresponding levels, which
""""" are given by the band diagram in
Fig. 5, are from top to bottom
HH, HH,, LH,(SO)), HH,,
A A\ LH,(SG,), and HH. We note
that atk;=0 the heavy-hole sub-
bands are not mixed with the
slike conduction band but only
with the p-like conduction band.

[\*] [¥¥]

|-+

We expect thep-type conduction
T.H, : .
band to influence exclusively the
\/ T HH,—HH,, optical transitions.
HH,

conduction states for a zero in-plane wave vector. This feainfluenced by the 4ype conduction band and not by the
ture can be easily predicted by looking at the interband mas-type conduction band when 0. Thes-type conduction
trix elements inside the 2414 matrix fork,=k,=0. Inthis  band influence occurs only whek), increases because of
case there are no coupling terms between|the+3) and  band-mixing effects. Another interesting property is that the
| +) states while the coupling of tHer,+ 3) states with the HH,— LH, transition is allowed ak; =0 for light polarized
|—,*) and|—,=3) still exists. This feature is in contrast in the (x,y) plane. This feature which is usually explained by
with the behavior of light-hole subbanéis , = 3) which are  the band-mixing effect is more detailed in the present work
mixed with boths-like |=) andp-like |—,%3) conduction  with an assignment of the specific bands at the origin of this
bands. The light-hole subband mixing with both and effect, in particular to describe the influence of the conduc-
p-type conduction bands d,=k,=0 can be easily ex- tion bands into the optical transitions K+ HH, and HH,
plained by the fact that in this case the,*3) state is —LH, at k=0. The comparison of the data obtained with
composed with X,Y,Z) wave functions(Table ). The Z  the 14-band model with the data obtained with the 6-band
components of the light hole allow th& {p), coupling with model indicates that strong differences are observed at small
the|+) state atk,=k,=0. in-plane wave vectors, thus leading to significant differences
in the absorption spectrum.

B. Intersubband dipolar matrix elements The calculation of the dipolar matrix element is obtained

as follows. The momentum matrix element between an initial
We now turn to the dipolar matrix element calculation for i state and a findl state is given by the expressi’
intersubband transitions from the Hidubband to the HK

LH,, and LH, subbands. The interactions etype conduc- Mg IHy

tion andp-type conduction bands with the valence band have (e p)i’f:(ﬁ <£' (9k> ' @
nearly equal contribution to the HH-HH, dipolar matrix W

element along the growth axis Whtkﬂ#O.MWe show here wheree is a unit vector parallel to the light polarization. As
that the dipole matrix element of this transition is mainly the dipole operator is related to the momentum operator, we
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chose in this work to discuss the dipolar matrix elementwill be included into the dipole calculation of the transition

given atk; by HH;—HH, or in the general case HH-HH,, is
ol = %> k 2(71_272)( -2 (10
(e p) :(Hf :hw—k”lf @  wheré®
| - - Epx| 2
The termf w; ¢ is the energy difference between the initial (y;—2y,)=1+ 3 EG+EGC+ EotEoctAg) (11

and final states. The computation of the dipoke g&); ¢ is
made by usin'g thg scalar produstV  H, . Starting from the First from Egs.(10) and (11), we see that, besides the
bulk k-p Hamiltonian we perform two scalar products for the remote bands, the only conduction band which influences the
casee=(ex,ey,0) and the case=(0,0¢,) in order t0 in-  ansition HH—HH, parallel to the growth axis is the
vestigate separately they and thez components of the . type conduction band via the interband matrix element
optical transitions. We then obtain two matrices in which weg | Thjs result is in contrast with the result reported in Ref.
replacek, by k,. These matrices are given in Appendix C in 11 indicating that botts- and p-type conduction bands play
the casek;=0 and for the 6-band model. For the simplicity the same role ire-polarized optical transitions wheh, in-

of the description of the matrix element we do not developcreases. We emphasize that giigpe conduction band influ-
the terms likea(z)k, into i[k,a(z)+a(z)k,], but this de- ence occurs only fok;#0. Second, because of the symme-
velopment which is necessary for conservation of the currenry of the quantum well and the operafos= —i 4/ 9z is odd,
density at the interface between the well and barrier is madenly transitions from HH to HH, wheren is even are al-

in the calculation of the matrix elements before projectinglowed. We note that expressi@f0) is equivalent to an ef-
them onto thd ¢y, basis. After development of the matrix fective mass approach which gives the well-known selection
element into theN-fold basis|¢,,), we obtain two matrices rule for intersubband transitions and includes implicitly the
(& f?Hk/(?k):”m o of size 14 (6Nx14 (6)N which are  p-type conduction band effect on the kHHH, transition.

used into the computation of the dipole alongy) andzby  From the matrixe- V\ H, in the casee= (s, ¢,,0) [Eq. (C1)
the expression in Appendix G we expect no transition HH-HH, to be

allowed for light polarized parallel to the layer plane when

GH,\ K . IH. K k;|=0. Figures @) and 9b) show the dipole matrix element

<8. _> => > C”f'kl(s. _k) ekl for the HH,—HH, transition calculated with the 14- and
K [ ¢ mcng npm oK N+ mg ,n;+m; & 6-band models as dashed and solid lines respectively. For

(9)  light polarized along the growth axis, the transition is al-

lowed atk; =0 while for light polarized parallel to the layer
The coefficientscﬁk” and energiegiw:(‘} involved in the the transition is forbidden. We find numerically a zero value

computation of the dipoles are obtained from the diagonalfor the dipole element HH—HH; atk; =0 in z andx polar-

ization of the HamiltoniarH for a givenk. We use the ization. These results are in agreement with the general se-

index n and m to represent the functiof(+),J,) and the lection rule of the transitions HH-HH,.

function | ¢,), respectively. We now turn to the case of the HH:LH,, transitions at
We note that the properties of the optical transitions cark=0. While the light hole is strongly mixed with the spin-

be observed in the- V,H, matrix before its development orbit split-off band atk=0, two matrix elements are in-

into the N-fold basis|¢,,,). Appendix C gives the matrie¢ ~ Volved into the HH—LH, transitions. For light polarized

-V H, obtained from the 6-bankl- p Hamiltonian presented parallel to the layer plane, the first and second terms are

in Appendix A [Eq. (A1)]. While the discussion is more given by[see Eq(C1)]

simple with the analytical expression available in the 6-band 5

model, we attempt to understand the effect of theand ) _ _i 7

p-type conduction bands on the transitions from the,HH (€1 ViHiumnr nr 2\/§73< Iaz) 12

subband to the Hfland LH, subbands ak=0. This dis- nd

cussion can be supported by the previous observation madeé

about Fig. 8 which shows the mixing of the valence band P

with the conduction band for the confined hole states of the (g ViHuu1,s01 = \/Eyg( _iE)’ (13

well. In particular, the HH subbands are exclusively coupled

with the p-type conduction band & =0. In the following,  wher&®

in order to underline the contribution of the first and

p-type conduction bands into the matexV H,, we use the Ep Epx

expression of the Luttinger parametgr(j =1,2,3) obtained 7’3:6EG 6(Eg+Egec) (14)
inside the[TI'g, I's, I';, Ty, I'7] (see Ref. 25 When
looking at the -V, H, matrix for the casee=(0,0g,), The transition HH— LH,, for light polarized parallel to

given in Eq.(C2), we see clearly that the unique term which the layer plane &t =0 is governed by the/; parameter and
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2
(@ ®

1 (HH,, LH,),

<z>(nm)
<z>(nm)
<z>(nm)

_ (HH,,LH,)_ 5
E E 1k x 04l
ke v P
v 02| i
05| }
L1 1) 2 | 1 1 | | | 0 1 1 1 1 1 1 1
0 02 04 06 08 0 02 04 06 08 0 02 04 10.6 038
k, [100] am’? k, [100] nn”! k, [100] no

FIG. 9. (a), (b) Dipolar matrix element in nm for the transition HH-HH, (a) along thez axis and(b) along thex axis. The dipole is
calculated along thgLOQ] direction. The soliddashed lines correspond to the §14-) band formalism(c), (d) Dipolar matrix element in
nm for the transition HE—LH; (c) along thez axis and(d) along thex axis. The dipole is calculated along tfE00] direction. In both
figures the soliddashed lines correspond to the 6414-) band formalismJ(e), (f) Dipolar matrix element in nm for the transition HH
—LH, (e) along thez axis and(f) alongx axis. The dipole is calculated along thE00] direction. In both figures the soli@lashed lines
correspond to the 6:4-) band formalism.

the odd operator-i d/dz. Following the set of equations
(12—(14), we conclude(i) that atk; =0 the transition HH
—LH, for light polarized in the layer plane is due to the
influence of boths- and p-type conduction bands with an
equal weight asEp/Eg is close toEpy/(Eg+Ege) [EQ.
(14)] and(ii) this transition is allowed for the LHconfined
state for even values of as in LH, [Egs.(12) and(13)].
According to the matrixe,- V| H, given in Appendix C
for the cases=(0,0¢,) which does not exhibit terms cou-
pling heavy holes with light holes and the spin-orbit split-off
band, we also concludéi) that no transition Hg— LH,, for
light polarized along the growth axis is allowed lgt=0.
The dipole matrix elements for the transitions HHLH,
and HH—LH, are given in Figs. &), (d) and 9e), ()
along the[100] direction for both 6- and 14-band models.
Figures 9c) and 9e) correspond to the polarization while
Figs. 9d) and 9f) correspond to the in-plane polarization.
We observe that the conclusidin) is verified forx polariza-
tion and that the conditiofiii) is verified forz polarization.
When comparing the dipole matrix element values ob-
tained from both models as reported in Fig. 9, we observe
that atk;=0 both models are in good agreement but that
differences appear very rapidly &g increases. Since the
calculation of the dipole elements provides a theoretical sup-
port to the experimental measurements like the absorption in

—_
[\

(HHI_) LHl)x (a)

e
o0
|

e
™~
|

(HH,—LH)_

Absorption (x 10* cm™)
|

e

(HH—HH) (b)

I~
|

Absorption (x 10* cm'™)
[\®]
|

doped structuredwe point out that the theoretical general 0
trends obtained with one of both models should be taken 005 0.1 0.15 02 025 03
with a margin of error given by the variation between both Energy (eV)

models. As an example we show in Fig. 10 the absorption

spectrum in bothx and z polarizations calculated with the

average value of the dipole elements in thke,k,,0) plane.

The comparison is performed for @type doping level of FIG. 10. Calculated absorption spectrum of a 5-nm-thick
p=2.8x10"%cm ® (p,p=1.4x10%cm 2 for a 5-nm-thick  sj, Ge, s quantum well,p doped with a hole concentration of 2.8
quantum well and considering an homogeneous broadening<10'® cm~3. 6-band mode(solid line) and 14-band modétiashed

of 10 meV (full width at maximun). We see that the 6-band line). (a) corresponds to a light polarization along thexis and(b)
model gives a much higher absorption amplitfctor of  corresponds to a light polarized along thexis.
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2) for the HH,— LH; transition for light polarized parallel to
the layer plane and an amplitude enhancement by 20% for
the transition HH— HH, for light polarized parallel to the
growth axis. We also observe a weak shift between the reso-
nance energies obtained with both models. This shift is as-
sociated with the difference in the energy band diagrams as
reported in Fig. 6. For a doping level of &40 cm™ 2 the
variation of the absorption amplitude reaches 10% for the
transition HH—HH, for light polarized parallel to the
growth axis and is close to 50% for the k4 LH transition

for light polarized parallel to the layer plane. We conclude
that the difference between both models should be consid- rig. 11, valence band dispersion curve of bulk silicon calcu-

ered when choosing a formalism to describe the experimenzteq with the 14 14 matrix and taking the/; given by Eq.(15) in
tal results, in particular if the system exhibits a high densityine termc’ inside the[I'y, T'3]. The dispersion curves along
of holes. [100], [210], and[110] appear as solid, dashed, and dotted lines,
respectively. The anisotropy of the valence band evolves continu-
ously between the directioi$00] and[110]. The anisotropy effect
IV. AXIAL APPROXIMATION of the p-type conduction band on the valence band cannot be
WITH THE 14-BAND MODEL avoided when the electronic wave vector increases when using the
14-band model. If we use the axial approximation proposed in Ref.
In the 4x4 Luttinger-Kohn Hamiltonian, the axiglor 21 with the 6-band model by puttingg=0 in the C term of the
cylindrical) approximation consists in takingg=0, which  6x6 matrix, the dispersion curve is strictly the same for the three
does not meary,= y; elsewhere. This approximation leads directions[100], [210], and[110] and more generally for any direc-
to an energy which depends okg(-k)"? (Refs. 21,23, and  tion [ky,ky,0].

24). The axial approximation can be used in th&® . .
) bp try. As the wave vector increases, the energies become very

Luttinger-Kohn Hamiltonian. In the 88 Pidgeon-Brown sensitive to the direction and the in-plane isotropy behavior
Hamiltonian, thePk interaction between the conduction and . - pia py be
lost. This is due to the fact that the interband matrix ele-

valence bands is isotropic and the same approximation keeﬂr)iéentsp K become 100 larae as compared to the second-
cylindrical symmetry: it is thus enough to change the X 9 P

Luttinger-like parameters of the>88 Hamiltonian. On the order perturbation as reported in H45). This feature leads

contrary, in the 1414 Hamiltonian, thePyk interaction is to an anisotropy of the valence band in k0] plane

anisotropic and whatever the values of the Luttinger-like payvhenk increases. Therefore when including hiéype con-

rameters the energy depends on the direction and cannot t%lcnon band effect exactly in the valence band calculation as

. . " . s made with the 14-band model, the axial approximation
:\ff[z:aged via the Luttinger-like parameters, as is shown her(%Jsually done into the Luttinger-Kohn or Pidgeon-Brown

Folowing an deaof Rl 21, we st show trat we can 2 ST0, ) & Tl eciiaert et poposee
lower the anisotropy of the 2414 matrix: to compensate the ) 9 P

anisotropy of thePxk interaction inside the valence band we cylindrical symmetry.
change the influence of the remote bands which are included
by second-order perturbation via the Luttinger-like param-
eters. A short calculation from E¢B2) in Appendix B leads We have presented a comparison between a 6-band and a
to the following value ofy in the term of Eq(B1): 14-bandk-p formalism to describe the valence band struc-
ture and intersubband optical matrix elements of SiGe/Si het-
S erostructures. In the bulk, a discrepancy between both mod-
,_¥sm7v2 Epx 1 15  ©Is appears for wave vectors larger than 0.5 hmThe
Yam T T T Eg+Egc’ (19 validity of the 14-band model at large wave vectors was
inferred from a comparison with a more complete calculation
o , using asp’s* formalism. In the case of SiGe/Si quantum
We note that when projecting the 14-bakgh matrix onto ey, the origin of the optical selection rules was discussed
the[I'g, I'; ] (see Appendix Bwith y4 given by Eq.(15)  on the basis of the projection of the envelope function on the
and by considering second-order perturbation of the condugifferent subbands. The role of tisype andp-type conduc-
tion band on the valence band, we obtain the 6-bRfEl  tion bands on the selection rules was emphasized. The dipo-
matrix (Appendix A with y4=0. In Fig. 11, we show the |ar matrix elements of the HH-HH, and HH — LH, inter-
diSperSion curves of the valence band in bulk silicon alon%ubband transitions were calculated for the in-p|ane and
the [100], [210], and [110] directions. These dispersion djrections. We have found that the 6-band formalism leads to
curves are obtained with the 4.4 matrix in which we have  an overestimation of the amplitude of the intersubband ab-
replacedyy by Eq.(15). For small wave vectors—i.e., f&;  sorption as compared to the 14-band formalism. We have
lower than 1 nm'—the energies are weakly dependent onfinally shown that the axial approximation is not valid for the
thek direction, thus leading to a nearly cylindrical symme- 14-band formalism.

Energy (eV)

V. CONCLUSION
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APPENDIX A: THE 6-BAND HAMILTONIAN

By applying theH, Hamiltonian to the 6-fold valence band space defined in Table | and written in the |okd&),
[+, ]+, —3)|+,— 2),|+,+),|+,—), the 6x6 Hamiltonian is given by

o B
— K2+ A B c 0 N J2c
o 3
cc — k2= A 0 C —2A - \[EB
6x6 0 K2 -B g J2
HE*6= ce —yik*=A —\3B A, (A1)
*
0 cc cc — v K2+A  —2c* B
Y1 \/E
cc cc cc cc —A— y,Kk? 0
cc cc cc cc 0 —A—y,k?

where
A= y,(2k;—Kp),
B=2\3y3k,(k—iky),
C =3[ ymk? — yak2 1,

.. e e o - h
with k. =k, =ik, and k2=kZ+kJ, wherek,= \/ﬁka, a=x,Y,z,p,+,—, and ym=(v3+ v2)/2,74=(y3— v2)/2. The
0
numerical values oEp, Epyx, Eg, Egc, A, Ac, andy; are given in Table I1I.
The strain Hamiltonian we used in the quantum well calculation with the six-band model is given in the 6-dimensional
spinor basig|+,3),|+,3).|+, = 3), [+, = 3).|+,+), [+, =)} by

ave —bye|; 0 0 0 0 0
0 ave +bye, 0 0 \/zbvsm 0
0 0 ave +bye|, 0 0 —\2bye
Hs= 0 0 0 aye +bye|, 0 0 ’ (A2)
0 V2bye|, 0 0 aye 0
0 0 —\2bye 0 0 aye

wheree ||, =¢g|—¢&,, &, =&,,= —2(C1/C1ye|, ande|= e, =eyy=(agi— aSikXGeX)/(aSikXG%() whereag; andaSikXG%( are
the lattice constants of the substrate mategi$il and the well material ($i,Gg,), respectively. The deformation potential
parameter and lattice constant are given in Table II.

APPENDIX B: THE 14-BAND HAMILTONIAN
1. 14X 14 k-p matrix
In the basis spinor d&t=0 given in Table | and written in the order

Pg:|=2)= 2= =2l = =2) el = F )= =) L7l +)[ =),

Lo+ 201+ 2)l+ =2+, =3 T7 [+, +),

+,-),
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the 14X 14 Hamiltonian is given by

x
Hllc4 14

1 1
E?— Bc Cc 0 —=Bac \/ECAC 0 0 0 P; —=P% 0 P; \/:PZ
2 BB 3 3
3 -1 1 -1
cc Ei. 0 C -\24 _\ﬁB 0 0 —P; 0 0 —P 0 —P;
s c Ac 5B8ac N N N
3 -1 -1 1
cc 0 Ei -B. _\/:B* V24, 0 0 — P 0 0 — P —P; 0
8 7P AC c \/g X \/5 X \/5 X
1 -1 1 2 -1
0 cc cc EH —\/EC* —B* 0 0 0 — P, —P; 0 \/:pz — P2
8 AC \/5 Ac \5 X \5 X 37 x \/g X
E 0 o o 2p, R \/5 0 0
cc cc cc cc 6— —_— —_— — —p?
0 E 0 0 \/_ ! Py 0 ! Py 0 0
cc cc cc cc 6— — P, —
=[ o o o o 0 0 E R \/E - Lp- 0 P Lp-
" V2 3 e V3 3
o 0 0 o0 0 0 0 E 0 —Lpe \/E L p- Lpe Zlp
_ — _PZ —_— —_— —_— z
’ V6 3 V2 V3 3
1
0 cc cc 0 cc cc cc 0 EY, B’ c’ 0 ﬁBIA Vacy
L 1 3
cc 0 0 cc 0 cc cc cc cc Eg, 0 C - \/EA - EB
3
cc 0 0 cc cc 0 cc cc cc 0 E§+ —-B’ — \/;B’A* 24}
0 cc cc 0 cc cc 0 cc 0 cc cc E{;’+ —\/EC’A* LB’A*
V2
cc 0 cc cc 0 0 cc cc cc cc cc cc E;y 0
cc cc 0 cc 0 0 cc cc cc cc cc cc 0 E;.

(B1)
In the following, the inde) refers to the three index€§,2,3.
2. Off-diagonal matrix elements inside the[T'y , I'T] valence fect of all the bands includingl's , I'y , T'7 1, the y are

band subspace related to the Luttinger parameteys available in Table IlI

The off-diagonal matrix elements inside the valence band®y the following relations?
subspace are given by:

, Ep Epx/ 1 1
vo wo ¥o wo M=M73E.7 "3 |Es+E +E +EactAq)’
A=yRR-K), A=k, ° °ree TereerTe
B’ =2\/§yékzk, , BAZZ\/§7£3‘|’(ZR, , Ep Epx
C'=3( k2 = 7ik2),  Ch=V3(vamk® = v4dk2), Y22 §E; T 6(Eat Eoo)’
with
Ep Epx

N 3= Y5 BE. T 6(Eqt Eag) (B2)
Y= (va+ )12, v4= (73— D)2, vim=(vAs+ ¥a2)/2, ¢ O(EstEec)

A= (YA~ Ya2)/2.
Yaa= (V5™ 722) Since the spin-orbit energy is small as compared to the
In the 14-band model, the effect of the remote bands on thenergy difference between the valence band and the far level
valence band is taken into account by the paramefefj outside the[I'y ,I'y ,I';,I'g,I';], we use ¥ =7a; (Ref.

=1,2,3). While the Luttinger parametess contain the ef-  25).
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3. Off-diagonal matrix ele.ments inside the[T'g , T'g] Py =Pyk. ,
conduction bands
We define the off-diagonal matrix elements inside the %= Pxk.

[F'g.I's ] conduction bands as: Here P and Py are the interband matrix elements defined as
Ac="ca(2K3~ Ri), Asc="vaca(2k:— R,E) :
Bc=23Ycskko . Bac=213Yacakk_,
Ce=3[Yeal ki~ k) — 20 ycakyk, .
Cac=V3[Vaca(K2- Ri) — 2iyacakeky].

The general expression of the Luttinger-like paramét@(

into the off-diagonal term inside thetype conduction band
subspace is given by the following set of equati®hs:

h ,
P= o (SIPiX),

7 RN s |
Px=m—0<chpxllY>= ﬂ(YCIDXIIXF E<X0|px||z>'

The parametersEp and Epy are defined asEpy
=(2my/%?)P% andEp=(2my/%°) P2

We note that the inclusion of remote bands by second-
order perturbation leads to the appearance of interband off-
diagonal terms in second order d& in the following

Yei~ Yaci expressions:
- Epx 1 1
o Eex N o 1/ 1 1
Yai=vat 3 EctEactAc  EotEgotActA)’ > (Slk-pliXilk-p|X)= +
7 2 ES_ Ei EX_Ei
pr and

Yco= 7C2_6(EG+ EGC+ AC+ A) !

> (Xclk-plililk x1 ! !
EPX i < Cl p||><|| p| >§ EXC_Ei+EX_Ei ’

Ve Ye3 T G E T Egot Act )

(B3)

wherei is an intermediate far level at ener@y. Because
each involved function is an eigenstate of the inversion sym-
dnetry operator of th©y, group and knowing that the valence
states have opposite parities with the fipstype ands-type

The yc; are the Luttinger parameters for tpetype con-
duction band which includes the whole band effect on th

[T, 1;6 ] dsut]:c)fspace. 'I;]he param eters; accoznt fpr tr:)e rz— conduction states, these interband terms are equal to zero in
mote band effect on thel's , I'g ]p-type conduction bands . case When consideringy crystals like GaAs, these

without the valence barid’g , I'; ] and the conduction band terms are not equal to zero but are usually omitted without
I'; . In the Hamiltonian which includes off- diagonal terms any explanation in the literature. As the remote bands are in
in the subspacgl'y ,I'g ], the}cj parameters are related to the most general case far in energy from the first conduction
the yc; parameters by the set of equatidB8). We can note  band and valence band, one can suppose that it is very weak
that in semiconductors with inversion symmetry such as Sas compared to the interband coupling teFR. A more

and Ge, the coupling between tfie and[['5 ,[';] van-  detailed study concerning semiconductors without inversion
ishes. As opposed to the case of G&Athe set of equations Symmetry would be necessary to clarify this point.

(B3) would contain the dipolar matrix elements betwdén

and[I'g ,I'g ]. When takingyc;j=0 in Egs.(B3), we con- 5. Diagonal matrix elements

sider that the result of the whole band effect on phiype The diagonal matrix elements are defined by:
conduction ban@I'g ,I'; ] is to lead to a flat band. When the

remote bands are not taken into account insidg the,I'¢ | EY =EJ —7cik?+Ac,

band, we také}cj:o in all nondiagonal terms and we take

Ye1=—1 andyc,=0 in the diagonal terms. In this way we Et =EJ —7ycik?—Ac,

take the nonperturbed terms of the Hamiltonidp inside
[['g.I's]. While the stype conduction band behavior is
close to the free electron energy dispersion neaf th@int,
we do not include the remote band effect on the band. E, =E9 -2,

4. Interband matrix elements

The momentum matrix elements are defined as
L 0 L ’
“ =Pk, , Es. =Eg. — vik*— A/,

PZ=Pk,, E7r=E7, — 7a:K%,
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where . #2

k?=-—Kk>2.

E —Eg+Egc+Ac, 2mo
The spin-orbit energies are defined as

EO_:EG+EGc,

A= ixIvunpliZ)
:—I s
4m3c? Ply

ES =Eg,
Eg, =0, :
Ac=—22<'xc|[VU/\p]y|Zc>-
0 4mgc
E7.=—4,
The numerical values dEp, Epx, Eg, Egc, A, Ac,
and and y; are given in Table III.

6. Strain Hamiltonian

In the quantum well calculation, the subband dispersion was obtained fror.ffié* Hamiltonian onto which we expand
the 8x8 strain HamiltonianHg and the potentiaV. In the 8-dimensional spinor basf$+),|—),|+,2),|+.,3),|+,—3),

[+,—3),|+,+),|+,—)} (see Table) the 8x8 Hg is given by

ace O 0 0 0 0 0 0
0 ace 0 0 0 0 0 0
0 0 aye—bye 0 0 0 0 0
0 0 0 ave +bye||, 0 0 V2bye|, 0

Hs=| o o 0 0 aye +bye||, 0 0 —2bye, | B4

0 0 0 0 0 ave—bye |, 0 0
0 0 0 V2bye ), 0 0 aye 0
0 0 0 0 —2bye, 0 0 ave

wheres |, =g|—&,, &, =g,,= —2(C12/Cyyg|, andg|= e =eyy=(agi— aSilfoex)/(aSilfoex) where @; and & e are

the lattice constants of the substrate matgi$l and the well material ($i ,Gg,), respectively. The deformation potential
parametersas, by and the lattice constants are given in Table Il. Since the deformation potential parameters, which are
involved inside thep-type conduction band, are not known, we take them arbitrarily equal to zero.

APPENDIX C: THE DIPOLAR MATRIX ELEMENTS

To simplify the discussion in the text we use the standard notationfHH(LH(7]), and SO(]) to design the spin-
degenerated heavy-hdle , + 3), light-hole|+,= 3), and spin-orbit+,+) states, respectively, defined in Table I. The matrix
€-V(H, is derived from the &6 Hy matrix in Eq. (A1) at ky=k,=0. For light polarized parallel to the layer plane,
=(ex,#y,0) andk;=0:

HHT LHT LH| HH| SOt SO|
0 2\3yze_k, O 0 V6y3e _k, 0
2 cc 0 0 0 0 —~3\2yse_k,
£H~Vka:2—mO>< 0 0 0 —23yse_k, —32yse.k, 0 : (C1
0 0 cc 0 0 V6yse .k,
cc 0 cc 0 0 0
0 cc 0 cc 0 0

wheree _=(ey—iey) ande, = (g +isy).
For light polarized along the growth axis=(0,0¢,):
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HHT LHT LH| HH| SO SO|
_2(7’1_2?’2)Rz 0 0 0 0 0
.2 0 —2(y1+27,)k, 0 0 — 425k, 0
er Vb= 0 0 —2(71+27)k, o 0 429k,
0 0 0 —2(y1=272)k, 0 0
0 cc 0 0 —2y,k, 0
0 0 cc 0 0 — 2.k,
(C2

In both matrices the terms likek, have explicitly the forms (yk,+k,y) with k,= —i d/9z.

*Electronic address: philippe.boucaud@ief.u-psud.fr B 64, 115207(2002.
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