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Comparison between 6-band and 14-band k"p formalisms in SiGeÕSi heterostructures

M. El kurdi, G. Fishman, S. Sauvage, and P. Boucaud*
Institut d’ Electronique Fondamentale, UMR CNRS 8622, Baˆtiment 220, Universite´ Paris-Sud, 91405 Orsay, France

~Received 10 February 2003; published 23 October 2003!

We report on a comparison between a 14-band and a 6-bandk•p model to describe the valence band of
pseudomorphic SiGe/Si heterostructures. A strong variation between both models is observed for the descrip-
tion of the valence band dispersion and for the calculation of the intersubband dipolar matrix elements for
in-plane wave vectors as small as 10% of the Brillouin zone size. We show that the 6-band formalism
overestimates the amplitude of the intersubband absorption by a factor of 2 for light polarized in the layer
plane. The origin of the polarization of the intersubband transitions is discussed and the limits of both models
for the calculation of the energy band diagram and dipole matrix elements are outlined. We finally show that
the usual axial approximation procedure, which is often used to build a cylindrical 4-band or 8-band Hamil-
tonian, cannot give a cylindrical 14-band Hamiltonian.
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I. INTRODUCTION

Infrared transitions in SiGe/Si low-dimensional heter
structures have attracted considerable interest in recent y
The intersubband transitions in quantum wells and the in
band transitions in quantum dots have an important poten
for optoelectronic devices operating in the midinfrared
far-infrared spectral ranges.1,2 Midinfrared photodetectors
using quantum wells or quantum dots epitaxially grown
silicon have been demonstrated.3,4 More recently, intersub-
band electroluminescence in cascade structures has bee
ported, opening the route to the realization of a silicon-ba
midinfrared or far-infrared laser.5 A large band discontinuity
between silicon and strained SiGe alloys is observed in
valence band, implying that the intersubband or intraba
optical processes involve different hole states~heavy holes,
light holes, and spin-orbit split-off band!. Many of the infra-
red optical experiments on strained SiGe quantum wells
quantum dots reported so far are thus interpreted in
framework of a 6-bandk•p calculation.3 This formalism cor-
responds to a resolution of the Luttinger Hamiltonian th
describes theG8

1 and G7
1 valence bands.6 The main advan-

tage of this approach is to avoid the computation of the c
duction band while taking into account its influence on t
valence band energy diagram and on the optical intervale
band transitions. The influence of the conduction band on
valence band energies is introduced by second-order pe
bation with the Luttinger parameters.7 The influence of the
conduction band on the intervalence band optical matrix
ements is obtained by first-orderk•p perturbation on the
valence band states.8 The introduction of the first-orderk•p
perturbation to account for the conduction band states ca
used to calculate the optical matrix elements of intersubb
transitions in quantum wells.9 One important consequence
the effect of the conduction band on intersubband opt
transitions in quantum wells is the possibility to observe o
tical transitions for light polarized parallel to the layer plan
as evidenced in several absorption experiments.10 Since the
interband separation between valence and conduction s
near theG point is large in Si and Ge materials, it is justifie
to take into account the conduction band by a perturbatio
first order on the valence band states.
0163-1829/2003/68~16!/165333~16!/$20.00 68 1653
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In the case of SiGe alloys, thes-type andp-type conduc-
tion bands are not far in energy and both bands exhibit
teraction matrix elements with the valence band of the sa
order of magnitude. It is therefore necessary to introduc
14-bandk•p formalism for SiGe/Si quantum wells to ac
count for the admixture between the firsts-type and the
p-type conduction bands on the valence band.11 The 14-band
formalism describes the whole conduction band and the
lence bands@G8

2 , G6
2 , G7

2 , G8
1 , G7

1#. In this formalism,
the influence of the firsts-type andp-type conduction bands
on the valence band is included exactly. It appears that
interaction between thep-type conduction band and th
p-type valence band favors intersubband transitions para
to the layer plane while the interactions of boths- andp-type
conduction bands with the valence band have nearly eq
contributions to the oscillator strength parallel to the grow
axis. Since the 14-band formalism accounts for the inter
tion between the conduction band and valence band exa
it should be more accurate than the 6-band model. Sign
cant differences exist between both models. We show tha
axial approximation which is usually used in the 6-ba
theory is not valid with the 14-band model. The axial a
proximation is valid when we consider the influence of
s-type conduction band because it induces an isotropic ef
on the valence band. It is not the case in the 14-band mo
since thep-type conduction band has an anisotropy effect
the valence band and we see no analytical method to bu
14314 Hamiltonian with a cylindrical symmetry.

In this work, we report on a detailed comparison betwe
the 6-band and 14-band formalism for the calculation of
energy band diagram and the dipolar matrix elements
SiGe/Si heterostructures. We show that important differen
are obtained for the subband energies in quantum well
wave vectors smaller than 1 nm21 along with strong varia-
tions in the dipolar matrix elements when the in-plane wa
vector increases, leading to significant differences in the
culation of the absorption spectrum inp-doped structures
We find that the 6-band model gives higher absorption a
plitudes for the HH1→HH2 transition~by 20%! and for the
HH1→LH1 transition ~factor of 2! as compared to the ab
sorption amplitude obtained with the 14-band model
heavily doped structures.
©2003 The American Physical Society33-1
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FIG. 1. Schematic representa
tion for the 14-~left! and 6-~right!
band models representing the in
volved bands and relevant param
eters.
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This article is organized as follows. In Sec. II, the 14- a
6-band models are first described and their results are c
pared for the case of bulk silicon. We point out the limit
validity of the 14-band model to describe the valence ba
because of the uncertainty of the input parameters which
involved in describing the nonparabolicity of thep-type con-
duction band. While the 14-band model does not allow us
describe accurately the dispersion of the conduction ba
near theG point, we discuss its influence on the calculati
of the valence band energy diagram for wave vectors clos
the center of the Brillouin zone. We finally quantify the lim
of both models and show that the 14-band model is still m
accurate than the 6-band model. In Sec. III, we provid
detailed description of the valence band of a strain
Si/Si0.5Ge0.5/Si quantum well. We present a comparison b
tween both formalisms, focusing on the energy band diag
and on the dipolar matrix elements. Both intersubba
(HH1→HHn) and intervalence band@HH1→LHn(SOn)#
transitions are studied. We point out the strong variations
the energies and of the dipolar matrix elements between
6-band and 14-band models for wave vectors smaller t
10% of the Brillouin zone size, in particular for the case
the HH12LH1(SO1) transition. In Sec. IV, a discussion o
the axial approximation is finally presented.

II. 14-BAND AND 6-BAND k "p FORMALISMS

In this section, we first describe both 14-band and 6-b
formalisms and we present a comparison between both
malisms for the case of bulk silicon. We show the limitati
of both models to describe the valence band. The main is
of this part is to show the strong nonparabolicity effect of t
16533
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p-type conduction band on the valence band energies. S
ond, we attempt to quantify the limit of both 6-band an
14-band models.

14-band and 6-band k"p formalism

The k•p equation we solve in the present work is6,8

HkUlk
(0)5Elk

(0)Ulk
(0) , ~1!

where

Hk5
p2

2m0
1U1

\

4m0
2c2

~“U`p!•s1
\

m0
k•p1

\2k2

2m0
,

~2!

m0 is the free electron mass,\ is the reduced Planck con
stant, andc is the speed of light in vacuum.U is the periodic
potential of the unstrained crystal ands5(sx , sy , sz) are
the Pauli matrices. TheUlk

(0) represent the Bloch function
spinors in the unstrained crystal. As usual thek-dependent8

spin-orbit coupling term (\2/4m0
2c2)(“U3k)•s, has been

neglected. In the following, we apply thek•p formalism to
the 14-fold space of the valence band@G8

1 ,G7
1#, the lowest

G7
2 , and the second conduction bands@G8

2 ,G6
2#. These

bands and the associated parameters are schematically
trated in Fig. 1. In the case of the 6-band model, thek•p
equation~2! is projected onto the 6-fold space of valen
bands@G8

1 , G7
1#. TheG bands are defined in an orthogon

base of Bloch states atk50 given in Table I. This set of
functions diagonalizes the spin-orbit coupling represented
the third term in Eq.~2!. The notationsJ and Jz in Table I
represent the total angular momentum and its projec
3-2
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TABLE I. Luttinger-Kohn periodic amplitudes used in both 14- and 6-~right! band models. The indices
2 and 1 design, respectively, the conduction~left! and valence~right! states whileu1& and u2& are the
s-type spin-degenerated conduction states. The set of wave functions for the 6-band model is th
without the conduction states. The phases are chosen to give real matrix elements to thek•p Hamiltonian.

G8
2 J5

3
2 Jz56

3
2;6

1
2 G8

1 J5
3
2 Jz56

3
2;6

1
2

u2,3
2&5UiF2 1

A2
~XC1 iYC!↑G L u1, 3

2 &5U i F2
1

A2
~X1 iY!↑G L

u2, 1
2 &5U i F2

1

A6
~XC1 iYC!↓1A1

2 ZC↑G L u1, 1
2 &5U i F2

1

A6
~X1 iY!↓1A2

3 Z↑G L
u2,2 1

2 &5U i F 1

A6
~XC2 iYC!↑1A2

3 ZC↓G L u1,2 1
2 &5U i F 1

A6
~X2 iY!↑1A2

3 Z↓G L
u2,2 3

2 &5U i F 1

A2
~XC2 iYC!↓G L u1,2 3

2 &5U i F 1

A2
~X2 iY!↓G L

G6
2 J5

1
2 Jz56

1
2 G7

1 J5
1
2 Jz56

1
2

u2,1&5U i F 1

A3
~XC1 iYC!↓1A1

3 ZC↑G L u1,1&5U i F 1

A3
~X1 iY!↓1A1

3 Z↑G L
u2,2&5U i F 1

A3
~XC2 iYC!↑2A1

3 ZC↓G L u1,2&5U i F 1

A3
~X2 iY!↑2A1

3 Z↓G L
G7

2 J5
1
2 Jz56

1
2

u1&5uS↑&

u2&5uS↓&
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along the z growth axis, respectively. The first index1
(2) denotes the valence~conduction! states which are eve
~odd! under the inversion symmetry operator, respectively
Table I, the functionsX, Y, Z, S, XC , YC , andZC are defined
as the eigenstates of theHU Hamiltonian: HU5p2/2m0
1U. These functions are assumed to be real and have
spectively, G5

1 symmetry (X, Y, Z), G2
2 symmetry ~S!

and G4
2 symmetry (XC , YC , ZC) of the cubic symmetry

groupOh .
The 636 and 14314 k•p matrices are given in Appen

dix A by Eq. ~A1! and in Appendix B by Eq.~B1!, respec-
tively. In the case of the 14-band formalism, two key poin
are to be clarified. The first point is related to the values
the modified Luttinger parametersg j8 ( j 51,2,3) which ap-
pear in the off-diagonal terms inside the@G8

1 , G7
1# subspace.

The values ofg j8 are chosen to highlight the effect of th
whole remote bands on the valence bands, except for the
s-type andp-type conduction bands which are included e
actly. The values ofg j8 are deduced from the well-know
Luttinger parametersg j as presented in Appendix B@see Eq.
~B2!#. We note that the expression of the parameterg j8 is
equivalent to the one used in the 8-band model,12 which is,
for instance, extensively used to describe the@G6 , G8 , G7#
valence and conduction bands in GaAs heterostructures.
second key point is related to the values of the off-diago
terms inside the@G8

2 , G6
2# conduction bands. These term

include the remote band effects on thep-type conduction
16533
n
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band, without the valence and theG7
2 bands, through theg̃C j

Luttinger-like parameters. In Eq.~B3! of Appendix B, we
give the relation between theg̃C j parameters andgC j param-
eters which include the whole remote band effect on
@G8

2 , G6
2# conduction bands. In this work we consider th

s-type conduction band without any remote band influen
If the remote band effects are not taken into account in
off-diagonal terms inside the@G8

2 , G6
2# subspace, thep-type

conduction band is parabolic like. As will be explained b
low, a parabolic dispersion of thep-type conduction band in
bulk Si and Ge would be quite different from the well-know
dispersion13 especially in the@100# direction of k space. At
first order, one can assume that a nonparabolic contribu
to the conduction band will not influence the valence ban
it is weak as compared to the interband energy separa
This assumption can be illustrated with a simple two-ba
model. Thek•p Hamiltonian without the spin-orbit coupling

Hk
85HU1

\

m0
k•p1

\2k2

2m0

can be written inside the (UC , UV) basis as

Hk
85F EG1«~k!1

\2k2

2m0
Pk

Pk
\2k2

2m0

G , ~3!
3-3
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whereUC andUV represent the conduction and valence ba
states, respectively,EG is the interband separation energ
defined asHk

8uUC&5(EG1\2k2/2m0)uUC& with Hk
8uUV&

5(\2k2/2m0)uUV&, andP5(\/m0)^UCupzuUV&. Here«(k)
is an energy which is referred to as the nonparabolicity of
conduction band induced by the remote band effect.
small wave vectors, we havePk!EG and at third order of
perturbation the valence band energy can be written as

EV5F12
EP

EG
S 12

«

EG
D G\2k2

2m0
, ~4!

where EP is related to the matrix elementP by EP
5(2m0 /\2)P2. Equation~4! is equivalent to the Kane equa
tion, which gives the effective mass of holes, corrected b
term depending on«(k). For a given wave vectork, if EG is
large as compared to the nonparabolicity contribution«(k),
we can neglect the effect of the nonparabolicity of the c
duction band on the valence band. While the nonparaboli
of thep-type conduction band is strong near theG point in Si
and Ge materials, the use of the 14-band Hamiltonian w
out theg̃C j which includes the remote band influence is th
limited to a given range ofk whereEG@«(k). According to
Eq. ~4!, a variation of 10% is observed for the energy of t
valence band between the case«5EG/10, which is reason-
able following Ref. 13, and the case«50 at k51 nm21.

We now turn to the influence on the valence band of
14314 matrix including the effect of the remote bands
the p-type conduction band as compared to the same ma
without taking into account the influence of the remo
bands. Figure 2 shows the conduction band~a! and valence
band~b! energy diagrams of bulk silicon obtained with th
14-band model. The figures present a comparison betw
Hk

14314 without accounting forg̃C j ~solid line! and with g̃C j

~dotted line!. Since the conduction band parameters involv
in this 14314 Hamiltonian are not well known, we chose
test their influence by taking values ofg̃C j which leads to a
flat p-type conduction band by puttinggC j50 @see Appendix
B, Eq. ~B3!#. We observe that thek dependence of thep-type
conduction band influences very rapidly the valence b
dispersion curve when the wave vector increases. An en
variation of 8% is found at 1 nm21 for the heavy-hole band
when we take into account the influence of the remote ba
on the p-type conduction band. We note that there are
experimental cyclotron resonance data available for the c
duction band parametersgC j near theG point as opposed to
the case of the valence band since electrons in bulk Si
Ge do not fill theG conduction band states. It is in contra
with direct band gap materials where the parameters of
conduction band can be experimentally measured. The a
racy of the 14-band model to calculate the dispersion cur
of the valence bands thus depends on the type of investig
semiconductors. In order to avoid the uncertainty with
14-band model for Si and Ge due to the conduction b
nonparabolicity, a more extended formalism which includ
remote band states like thesp3s* method would be
necessary.14 Such an extended model can be used as a re
16533
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ence to determine the limit of validity of the 6-band an
14-band models for the valence band calculation near thG
point.

The second-order perturbation used in the 6-band mo
to include remote band effects on valence states through
Luttinger parameters is justified when thek•p coupling with
other bands is weak as compared to the interband separa
In the two-level Hamiltonian of Eq.~3!, this situation corre-
sponds toPk!EG or k!EG3A2m0 /\2EP whereEG is the
difference of energy at theG point andEP the momentum
matrix elements betweenUC and UV . If we consider an
upper valueklim5 1

10 (EG3A2m0 /\2EP) for the range ofk
where the 6-band model is valid, a numerical applicat
with EG53.4 eV andEP525 eV gives a wave vector limi
of 0.34 nm21.

Figure 3 shows the valence band dispersion of bulk s
con performed with the 6-band~solid line! and 14-band
~dashed line! models in the@100# direction. It clearly shows
that the 6-band model does not describe the dispersion
the 14-band model and that variations between both mo
increase quadratically with the wave vector. While the 1
band model is limited by the description of thep-type con-
duction band nonparabolicity, the 6-band model is limited
the validity of second-order perturbation. As both mod
present different types of limitation to describe the valen
band, we attempt to quantify their limit and to define whi
of the 6-band and 14-band formalisms is more accurate

FIG. 2. ~a! Conduction band and~b! valence band of bulk sili-

con calculated with the 14314 matrix including theg̃C j as dashed

lines and without theg̃C j parameters as solid lines. Theg̃C j account
for the remote band influence on thep-type conduction band. The
valence band is influenced by thep-type conduction band very rap
idly as the wave vector increases.
3-4
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using a comparison with the description of the valence b
as presented in Ref. 14. In Fig. 4~a! we show the valence
band energy diagram obtained with thesp3s* model as a
solid line as compared with the energy diagram obtain
with the 14-band Hamiltonian~dashed line! without includ-
ing the remote band influence on thep-type conduction band
and the 6-band model~dotted line!. We obtain a good agree
ment between the 14-band and thesp3s* model while the
difference with the 6-band model appears clearly. The lim
tation of the 14-band model to describe the valence band

FIG. 3. Valence band of bulk silicon calculated with the 14-ba
model as dashed lines and the 6-band model as solid lines. Rel
variations between the different subbands are depicted in the
scale.

FIG. 4. ~a! Valence band diagram obtained with thesp3s*
model as solid lines compared with the 14-band Hamilton
~dashed line! without including remote band effect on thep-type
conduction band and the 6-band model~dotted line!. ~b! conduction
band obtained with thesp3s* ~solid line! and the 14-band mode
without including the remote band effect on thep-type conduction
band~dashed line!.
16533
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to the uncertainty in the input parameters is thus not
strong. This is in agreement with the assumption that
remote bands are so far in energy that their effect can
neglected in the range of wave vector we have conside
(2 nm21).11 We can thus conclude that the 6-band mode
more limited than the 14-band model despite the lack
knowledge of the conduction band parameters. In the follo
ing, the 14314 matrix will be used without including remot
band effects on thep-type conduction band. The compariso
of the sp3s* with the 14-band formalism for the case of th
conduction band is presented in Fig. 4~b!. The agreement is
less satisfying as compared to the valence band but the
ference is not significant for the description of the valen
intersubband dipole matrix elements as checked by mod
ing arbitrarily the values ofg̃C j .

III. 6-BAND AND 14-BAND k "p METHOD FOR STRAINED
SiGeÕSi QUANTUM WELLS

We will illustrate below the differences between th
6-band and 14-band models for the case of a strai
Si0.5Ge0.5/Si quantum well. This case is of interest since
can be used as a first approximation to describe the op
properties of the self-assembled islands obtained by no
nally depositing pure Ge on Si.15

A. Valence band dispersion

To describe the valence band dispersion of a strai
SiGe/Si quantum well grown along thez axis on a~001!
silicon substrate, we solve the equation

Hc5@Hk1HS1V~z!#c5Ec, ~5!

whereV(z) is the band offset potential which is diagonal
both 14-14- and 6-6-dimensional spinor basis. The strain
tential is included with the HamiltonianHS following the
procedure described in Ref. 16. For a quantum well gro
on a @001#-oriented substrate and thin enough to elastica
accommodate the strain due to the lattice mismatch,
strain in the~001! plane is

«xx5«yy5« i5
aSi2aSi12xGex

aSi12xGex

, ~6!

whereaSi and aSi12xGex
are the lattice constants of the su

strate material~Si! and the well material (Si12xGex), respec-

ive
ht

n

TABLE II. This table gives the experimental parameters
volved into the strain potential for Si and Ge. The lattice parame
are given in Å. The deformation potentials taken in theHS Hamil-
tonian (aC for the conduction band andaV , bV for the valence
bands! are given in eV.aG5aC2aV is the gap deformation poten
tial. C11 and C12 are the elastic moduli given in MPa. All param
eters are taken from Ref. 27 except forbV ~Ref. 17!. We use a linear
interpolation to obtain the strain parameters for a SiGe alloy.

a(Å) aC aV aG bV C11 C12

Si 5.431 25.10 0 25.10 2.33 1.675 0.65
Ge 5.658 29.5 0 29.5 2.08 1.315 0.494
3-5
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FIG. 5. Band offsets for va-
lence and conduction bands in
cluding the diagonal elements o
the strain potential in the set of th
spinor basis given in Table I. Left
14-band model. Right: 6-band
model.
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tively. The condition of zero stress in thez direction gives
«zz5«'522(C12/C11)« i while «xy5«yz5«zx50. Here
C11 and C12 are the elastic stiffness constants. The str
HamiltonianHS induces a shift and a splitting of the confin
ing potential seen by the carriers. The strain Hamilton
matrix elements can be obtained from thek•p matrix ele-
ments by symmetry considerations and substitution of
corresponding termskakb→«ab with a,b5x,y, z.16 The
HS matrices used for the calculation of the energy band d
gram with the 14-band model and 6-band model are given
Eq. ~B4! of Appendix B and Eq.~A2! of Appendix A, respec-
tively. The parameters involved into the HamiltonianHS are
given in Table II. Figure 5 shows the band diagram at theG
point of a strained Si/Si0.5Ge0.5/Si quantum well. In this fig-
ure the strain effect on the band edge energies was taken
account. The origin of energy is taken at the top of t
heavy-hole band barrier. The numerical values for the Si
Si0.5Ge0.5 band parameters used in this work are given
Table III. In the following, the results are illustrated for th
case of a 5-nm-thick Si/Si0.5Ge0.5/Si quantum well. The
heavy-hole valence band offset for the strained materialDEV
is assumed to be 350 meV.17 Using the usual assumption i
the envelope-function approach that the basisu6,Jz& is the
same in both materials Si and SiGe, we replacekz by the
momentum operatork̂z52 i ]/]z in the Hk Hamiltonian.
The solution of Eq.~5! at a givenkuu is written in the form
16533
n

n

e

-
y

nto
e
d

ckuu
(z)5(n

6 or 14xn,kuu
(z)un& wherexn,kuu

(z) is the envelope

function. The indexn refers to the statesu6,Jz& given in
Table I. In order to account for the spatial dependence al
the z axis of the band parametersa(z) and for the boundary
conditions, the second-order terms ink̂z in the 636 and 14
314 k•p matrices, like a(z) k̂z

2 , are replaced with

k̂za(z)k̂z ,18,19 while the linear terms like a(z)k̂z are replaced
with (1/2)@ k̂za(z)1a(z) k̂z#.

19 Equation~5! is solved using a
Fourier-like series expansion of the envelope funct
xn,kuu

(z), a method appropriate to account for the bound

conditions.19 To describe a quantum well centered atL/2, an
efficient and suitable basis of function

uwm&5A2

L
sinS mp

L
zD

has been used to project the envelope function asxn,kuu
(z)

5(m51
N cm

n,kuuuwm&. By using this set of basis, the envelop
function is imposed to be null atz50 andz5L. The enve-
lope function is by this way sampled with the firstN eigen-
functions of a large well of widthL with an infinite barrier
potential. The width of the large wellL and the numberN of
functions uwm& are taken such that the bound states are
influenced by the infinite barrier~of the large well! and by
checking simultaneously the numerical convergence of
nger
TABLE III. Experimental band parameters of bulk Si and SiGe alloys used in this work. The Lutti
parametersg j are taken from Ref. 3~see also Ref. 17!. The energies gapEG andEGC , spin-orbit splittingD,
and DC in eV are taken following Ref. 27. The fixed values of the Kane energyEP and EPX in eV are
considered as identical in the well and in the barrier.

g1 g2 g3 EPX EP EG EGC D DC

Si 4.285 0.339 1.446 15 25 4.185 20.775 0.044 0
Si0.5Ge0.5 5.9 0.9 2.0 15 25 2.54 0.725 0.165 0.093
3-6
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energies.20 By applying the HamiltonianH containing the
potentialV(z) and the operatork̂z to the 14-~6-! dimensional
basis u6,Jz& and developing each term into th
N-dimensional basisuwm&, the resolution of Eq.~5! is con-
verted into a 14 (6)N314 (6)N matrix eigensystem prob
lem inside the 14~6! N-fold u6,Jz& ^ uwm& new basis. After
diagonalizing the 14 (6)N314 (6)N matrices at severa
point of the (kx ,ky) in-plane space, we obtain a correspo
dence of the band diagram of the hole-confined states
the corresponding wave functions. Since—as will be sho
below—the axial approximation as proposed in Ref. 21
not possible with the 14-band formalism, the numerical

FIG. 6. Dispersion of the hole subbands in the@100# direction of
the k space. The dispersions as dashed and solid lines are obt
with the 14-band and 6-band formalisms, respectively. From to
bottom, the subbands correspond to the HH1 , LH1(SO1), HH2 ,
LH2(SO2), and HH3 subbands.
16533
-
th
n
s
-

vestigation was performed for in-plane wave vectors alo
the @100# direction. The following ideas remain valid for th
other directions of the wave vector in the layer plane.

The valence band energy diagram of the 5-nm-th
strained SiGe/Si quantum well obtained after solving Eq.~5!
is shown in Fig. 6 for the@100# direction. The 14- and 6-band
model solutions are shown in dashed and solid lines, res
tively. The energy of the first confined states are in go
agreement between both models, but as the energy
closer to the barrier edge~0 meV!, a discrepancy betwee
both models is observed. This behavior is associated with
increase of the wave vector when the quantified kinetic
ergy alongkz increases. As the confined states are relate
large-kz wave vectors, the variation of the valence subba
energies obtained in quantum wells can be attributed to
differences in valence band dispersion found for bulk s
tems for values ofk of 1 –2 nm21. Figure 7 shows the pro
jection of the wave function componentsxn,0(z) correspond-
ing to each level obtained atkuu50 with the 6-band model.
According to the wave function representation, the confin
states are indexed from the top to the bottom as HH1,
LH1(SO1), HH2, LH2(SO2), and HH3. Because the light-
hole and spin-orbit split-off states are strongly mixed, w
denote the state ‘‘LH~SO!’’ the ‘‘light-hole-like’’ state or, for
short, ‘‘LH.’’

The admixture of valence and conduction bands can oc
at kuu50. Figure 8 shows each componentxn,0(z) of the
wave function as obtained with the 14-band model. It a
pears clearly that the heavy-hole states are exclusively m
with the p-type conduction states and not with thes-type

ed
to
k

.

e
ly
FIG. 7. Envelope function
xn,0(z) representation of the hole
confined states in a 5-nm-thic
Si0.5Ge0.5/Si quantum well calcu-
lated with the 6-band formalism
The corresponding levels are from
top to bottom HH1 , LH1(SO1),
HH2 , LH2(SO2), and HH3. We
note that atkuu50 the heavy-hole
subbands are not mixed, while th
SO and LH subbands are strong
mixed. This mixing is due to both
coupling inside thek•p Hamil-
tonian and theHS Hamiltonian.
3-7
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FIG. 8. Envelope function
xn,0(z) representation of the hole
confined states in a 5-nm-thic
Si0.5Ge0.5/Si quantum well calcu-
lated by the 14-band formalism
The corresponding levels, which
are given by the band diagram i
Fig. 5, are from top to bottom
HH1 , LH1(SO1), HH2 ,
LH2(SO2), and HH3. We note
that atkuu50 the heavy-hole sub-
bands are not mixed with the
s-like conduction band but only
with the p-like conduction band.
We expect thep-type conduction
band to influence exclusively the
HH1→HHn optical transitions.
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conduction states for a zero in-plane wave vector. This f
ture can be easily predicted by looking at the interband m
trix elements inside the 14314 matrix forkx5ky50. In this
case there are no coupling terms between theu1,6 3

2 & and
u6& states while the coupling of theu1,6 3

2 & states with the
u2,6& and u2,6 1

2 & still exists. This feature is in contras
with the behavior of light-hole subbandsu1,6 1

2 & which are
mixed with boths-like u6& and p-like u2,6 3

2 & conduction
bands. The light-hole subband mixing with boths- and
p-type conduction bands atkx5ky50 can be easily ex-
plained by the fact that in this case theu1,6 3

2 & state is
composed with (X,Y,Z) wave functions~Table I!. The Z
components of the light hole allow the (k•p)z coupling with
the u6& state atkx5ky50.

B. Intersubband dipolar matrix elements

We now turn to the dipolar matrix element calculation f
intersubband transitions from the HH1 subband to the HH2,
LH1, and LH2 subbands. The interactions ofs-type conduc-
tion andp-type conduction bands with the valence band ha
nearly equal contribution to the HH1→HH2 dipolar matrix
element along the growth axis whenkuuÞ0.11We show here
that the dipole matrix element of this transition is main
16533
a-
-

e

influenced by the p-type conduction band and not by th
s-type conduction band when kuu50. Thes-type conduction
band influence occurs only whenkuu increases because o
band-mixing effects. Another interesting property is that t
HH1→LH2 transition is allowed atkuu50 for light polarized
in the (x,y) plane. This feature which is usually explained b
the band-mixing effect is more detailed in the present w
with an assignment of the specific bands at the origin of t
effect, in particular to describe the influence of the cond
tion bands into the optical transitions HH1→HHn and HH1
→LHn at kuu50. The comparison of the data obtained wi
the 14-band model with the data obtained with the 6-ba
model indicates that strong differences are observed at s
in-plane wave vectors, thus leading to significant differen
in the absorption spectrum.

The calculation of the dipolar matrix element is obtain
as follows. The momentum matrix element between an ini
i state and a finalf state is given by the expression9,22

~«•p! i , f5S m0

\ D K «•
]Hk

]k L
i , f

, ~7!

where« is a unit vector parallel to the light polarization. A
the dipole operator is related to the momentum operator,
3-8
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chose in this work to discuss the dipolar matrix elem
given atkuu by

~«•m! i , f
kuu 5

eK «•
]Hk

]k L
i , f

kuu

\v i , f
kuu

. ~8!

The term\v i , f is the energy difference between the initi
and final states. The computation of the dipole («•m) i , f is
made by using the scalar product«•“kHk . Starting from the
bulk k"p Hamiltonian we perform two scalar products for th
case«5(«x ,«y,0) and the case«5(0,0,«z) in order to in-
vestigate separately thex,y and thez components of the
optical transitions. We then obtain two matrices in which
replacekz by k̂z . These matrices are given in Appendix C
the casekuu50 and for the 6-band model. For the simplici
of the description of the matrix element we do not deve
the terms likea(z) k̂z into 1

2 @ k̂za(z)1a(z) k̂z#, but this de-
velopment which is necessary for conservation of the cur
density at the interface between the well and barrier is m
in the calculation of the matrix elements before project
them onto theuwm& basis. After development of the matri
element into theN-fold basisuwm&, we obtain two matrices
(«•]Hk /]k)

n,m,n8,m8

kuu of size 14 (6)N314 (6)N which are
used into the computation of the dipole along (x,y) andz by
the expression

K «•
]Hk

]k L
i , f

kuu

5 (
mf ,nf

(
ni ,mi

c
mf

nf ,kuu* S «•
]Hk

]k D
nf1mf ,ni1mi

kuu

cmi

ni ,kuu.

~9!

The coefficientscm
n,kuu and energies\v i , f

kuu involved in the
computation of the dipoles are obtained from the diagon
ization of the HamiltonianH for a given kuu . We use the
index n and m to represent the functionu(6),Jz& and the
function uwm&, respectively.

We note that the properties of the optical transitions c
be observed in the«•“kHk matrix before its developmen
into the N-fold basisuwm&. Appendix C gives the matrix«
•“kHk obtained from the 6-bandk•p Hamiltonian presented
in Appendix A @Eq. ~A1!#. While the discussion is more
simple with the analytical expression available in the 6-ba
model, we attempt to understand the effect of thes- and
p-type conduction bands on the transitions from the H1
subband to the HHn and LHn subbands atkuu50. This dis-
cussion can be supported by the previous observation m
about Fig. 8 which shows the mixing of the valence ba
with the conduction band for the confined hole states of
well. In particular, the HHn subbands are exclusively couple
with the p-type conduction band atkuu50. In the following,
in order to underline the contribution of the firsts- and
p-type conduction bands into the matrix«•“kHk , we use the
expression of the Luttinger parameterg j ( j 51,2,3) obtained
inside the @G8

2 , G6
2 , G7

2 , G8
1 , G7

1# ~see Ref. 25!. When
looking at the «•“kHk matrix for the case«5(0,0,«z),
given in Eq.~C2!, we see clearly that the unique term whic
16533
t

p

nt
e

l-

n

d

de
d
e

will be included into the dipole calculation of the transitio
HH1→HH2 or in the general case HH1→HHn is

2~g122g2!S 2 i
]

]zD , ~10!

where25

~g122g2!511
EPX

3 S 2

EG1EGC
1

1

EG1EGC1DC
D . ~11!

First from Eqs.~10! and ~11!, we see that, besides th
remote bands, the only conduction band which influences
transition HH1→HHn parallel to the growth axis is the
p-type conduction band via the interband matrix elem
EPX . This result is in contrast with the result reported in R
11 indicating that boths- andp-type conduction bands pla
the same role inz-polarized optical transitions whenkuu in-
creases. We emphasize that thes-type conduction band influ-
ence occurs only forkuuÞ0. Second, because of the symm
try of the quantum well and the operatork̂z52 i ]/]z is odd,
only transitions from HH1 to HHn wheren is even are al-
lowed. We note that expression~10! is equivalent to an ef-
fective mass approach which gives the well-known select
rule for intersubband transitions and includes implicitly t
p-type conduction band effect on the HH1→HHn transition.
From the matrix«•“kHk in the case«5(«x ,«y,0) @Eq. ~C1!
in Appendix C# we expect no transition HH1→HHn to be
allowed for light polarized parallel to the layer plane wh
kuu50. Figures 9~a! and 9~b! show the dipole matrix elemen
for the HH1→HH2 transition calculated with the 14- an
6-band models as dashed and solid lines respectively.
light polarized along the growth axis, the transition is a
lowed atkuu50 while for light polarized parallel to the laye
the transition is forbidden. We find numerically a zero val
for the dipole element HH1→HH3 at kuu50 in z andx polar-
ization. These results are in agreement with the genera
lection rule of the transitions HH1→HHn .

We now turn to the case of the HH1→LHn transitions at
kuu50. While the light hole is strongly mixed with the spin
orbit split-off band atkuu50, two matrix elements are in
volved into the HH1→LHn transitions. For light polarized
parallel to the layer plane, the first and second terms
given by @see Eq.~C1!#

~«uu•“kHk!HH↑,LH↑52A3g3S 2 i
]

]zD ~12!

and

~«uu•“kHk!HH↑,SO↑5A6g3S 2 i
]

]zD , ~13!

where25

g35
EP

6EG
1

EPX

6~EG1EGC!
. ~14!

The transition HH1→LHn for light polarized parallel to
the layer plane atkuu50 is governed by theg3 parameter and
3-9
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FIG. 9. ~a!, ~b! Dipolar matrix element in nm for the transition HH1→HH2 ~a! along thez axis and~b! along thex axis. The dipole is
calculated along the@100# direction. The solid~dashed! lines correspond to the 6-~14-! band formalism.~c!, ~d! Dipolar matrix element in
nm for the transition HH1→LH1 ~c! along thez axis and~d! along thex axis. The dipole is calculated along the@100# direction. In both
figures the solid~dashed! lines correspond to the 6-~14-! band formalism.~e!, ~f! Dipolar matrix element in nm for the transition HH1

→LH2 ~e! along thez axis and~f! alongx axis. The dipole is calculated along the@100# direction. In both figures the solid~dashed! lines
correspond to the 6-~14-! band formalism.
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the odd operator2 i ]/]z. Following the set of equation
~12!–~14!, we conclude~i! that atkuu50 the transition HH1
→LHn for light polarized in the layer plane is due to th
influence of boths- and p-type conduction bands with a
equal weight asEP /EG is close toEPX /(EG1EGC) @Eq.
~14!# and ~ii ! this transition is allowed for the LHn-confined
state for even values ofn as in LH2 @Eqs.~12! and ~13!#.

According to the matrix«z•“kHk given in Appendix C
for the case«5(0,0,«z) which does not exhibit terms cou
pling heavy holes with light holes and the spin-orbit split-o
band, we also conclude~iii ! that no transition HH1→LHn for
light polarized along the growth axis is allowed atkuu50.
The dipole matrix elements for the transitions HH1→LH1
and HH1→LH2 are given in Figs. 9~c!, ~d! and 9~e!, ~f!
along the@100# direction for both 6- and 14-band model
Figures 9~c! and 9~e! correspond to thez polarization while
Figs. 9~d! and 9~f! correspond to the in-plane polarizatio
We observe that the conclusion~ii ! is verified forx polariza-
tion and that the condition~iii ! is verified forz polarization.

When comparing the dipole matrix element values o
tained from both models as reported in Fig. 9, we obse
that at kuu50 both models are in good agreement but t
differences appear very rapidly askuu increases. Since th
calculation of the dipole elements provides a theoretical s
port to the experimental measurements like the absorptio
doped structures,3 we point out that the theoretical gener
trends obtained with one of both models should be ta
with a margin of error given by the variation between bo
models. As an example we show in Fig. 10 the absorp
spectrum in bothx and z polarizations calculated with th
average value of the dipole elements in the (kx ,ky,0) plane.
The comparison is performed for ap-type doping level of
p52.831018cm23 (p2D51.431012cm22 for a 5-nm-thick
quantum well! and considering an homogeneous broaden
of 10 meV~full width at maximum!. We see that the 6-ban
model gives a much higher absorption amplitude~factor of
16533
-
e
t

p-
in

n

n

g

FIG. 10. Calculated absorption spectrum of a 5-nm-th
Si0.5Ge0.5 quantum well,p doped with a hole concentration of 2.
31018 cm23. 6-band model~solid line! and 14-band model~dashed
line!. ~a! corresponds to a light polarization along thex axis and~b!
corresponds to a light polarized along thez axis.
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2! for the HH1→LH1 transition for light polarized parallel to
the layer plane and an amplitude enhancement by 20%
the transition HH1→HH2 for light polarized parallel to the
growth axis. We also observe a weak shift between the re
nance energies obtained with both models. This shift is
sociated with the difference in the energy band diagram
reported in Fig. 6. For a doping level of 6.431011cm22 the
variation of the absorption amplitude reaches 10% for
transition HH1→HH2 for light polarized parallel to the
growth axis and is close to 50% for the HH1→LH1 transition
for light polarized parallel to the layer plane. We conclu
that the difference between both models should be con
ered when choosing a formalism to describe the experim
tal results, in particular if the system exhibits a high dens
of holes.

IV. AXIAL APPROXIMATION
WITH THE 14-BAND MODEL

In the 434 Luttinger-Kohn Hamiltonian, the axial~or
cylindrical! approximation consists in takinggd50, which
does not meang25g3 elsewhere. This approximation lead
to an energy which depends on (kx

21ky
2)1/2 ~Refs. 21,23, and

24!. The axial approximation can be used in the 636
Luttinger-Kohn Hamiltonian. In the 838 Pidgeon-Brown
Hamiltonian, thePk interaction between the conduction an
valence bands is isotropic and the same approximation k
cylindrical symmetry: it is thus enough to change t
Luttinger-like parameters of the 838 Hamiltonian. On the
contrary, in the 14314 Hamiltonian, thePXk interaction is
anisotropic and whatever the values of the Luttinger-like
rameters the energy depends on the direction and cann
averaged via the Luttinger-like parameters, as is shown h
after.

Following an idea of Ref. 21, we first show that we c
lower the anisotropy of the 14314 matrix: to compensate th
anisotropy of thePXk interaction inside the valence band w
change the influence of the remote bands which are inclu
by second-order perturbation via the Luttinger-like para
eters. A short calculation from Eq.~B2! in Appendix B leads
to the following value ofgd8 in the term of Eq.~B1!:

gd85
g382g28

2
52

EPX

6

1

EG1EGC
. ~15!

We note that when projecting the 14-bandk"p matrix onto
the @G8

1 , G7
1# ~see Appendix B! with gd8 given by Eq.~15!

and by considering second-order perturbation of the cond
tion band on the valence band, we obtain the 6-bandk"p
matrix ~Appendix A! with gd50. In Fig. 11, we show the
dispersion curves of the valence band in bulk silicon alo
the @100#, @210#, and @110# directions. These dispersio
curves are obtained with the 14314 matrix in which we have
replacedgd8 by Eq.~15!. For small wave vectors—i.e., forkuu
lower than 1 nm21—the energies are weakly dependent
the kuu direction, thus leading to a nearly cylindrical symm
16533
or
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try. As the wave vector increases, the energies become
sensitive to the direction and the in-plane isotropy behav
is lost. This is due to the fact that the interband matrix e
ments PXk become too large as compared to the seco
order perturbation as reported in Eq.~15!. This feature leads
to an anisotropy of the valence band in the@kx ,ky,0# plane
whenk increases. Therefore when including thep-type con-
duction band effect exactly in the valence band calculation
is made with the 14-band model, the axial approximat
usually done into the Luttinger-Kohn or Pidgeon-Brow
Hamiltonian by a method equivalent to that proposed
Refs. 21 and 24 does not give valence band dispersion w
cylindrical symmetry.

V. CONCLUSION

We have presented a comparison between a 6-band a
14-bandk"p formalism to describe the valence band stru
ture and intersubband optical matrix elements of SiGe/Si h
erostructures. In the bulk, a discrepancy between both m
els appears for wave vectors larger than 0.5 nm21. The
validity of the 14-band model at large wave vectors w
inferred from a comparison with a more complete calculat
using asp3s* formalism. In the case of SiGe/Si quantu
wells, the origin of the optical selection rules was discuss
on the basis of the projection of the envelope function on
different subbands. The role of thes-type andp-type conduc-
tion bands on the selection rules was emphasized. The d
lar matrix elements of the HH1→HH2 and HH1→LH2 inter-
subband transitions were calculated for the in-plane anz
directions. We have found that the 6-band formalism lead
an overestimation of the amplitude of the intersubband
sorption as compared to the 14-band formalism. We h
finally shown that the axial approximation is not valid for th
14-band formalism.

FIG. 11. Valence band dispersion curve of bulk silicon calc
lated with the 14314 matrix and taking thegd8 given by Eq.~15! in
the term C8 inside the@G8

1 , G7
1#. The dispersion curves alon

@100#, @210#, and @110# appear as solid, dashed, and dotted lin
respectively. The anisotropy of the valence band evolves cont
ously between the directions@100# and@110#. The anisotropy effect
of the p-type conduction band on the valence band cannot
avoided when the electronic wave vector increases when using
14-band model. If we use the axial approximation proposed in R
21 with the 6-band model by puttinggd50 in the C term of the
636 matrix, the dispersion curve is strictly the same for the th
directions@100#, @210#, and@110# and more generally for any direc
tion @kx ,ky,0#.
3-11
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APPENDIX A: THE 6-BAND HAMILTONIAN

By applying theHk Hamiltonian to the 6-fold valence band space defined in Table I and written in the orderu1, 3
2 &,

u1, 1
2 &,u1,2 1

2 &,u1,2 3
2 &,u1,1&,u1,2&, the 636 Hamiltonian is given by

Hk
63651

2g1k̆21A B C 0
B

A2
A2C

cc 2g1k̆22A 0 C 2A2A 2A3

2
B

cc 0 2g1k̆22A 2B 2A3

2
B* A2A

0 cc cc 2g1k̆21A 2A2C*
B*

A2

cc cc cc cc 2D2g1k̆2 0

cc cc cc cc 0 2D2g1k̆2

2 , ~A1!

where

A5g2~2k̆z
22 k̆r

2!,

B52A3g3k̆z~ k̆x2 i k̆y!,

C5A3@gmk̆2
2 2gdk̆1

2 #,

with k̆65 k̆x6 i k̆y and k̆r
25 k̆x

21 k̆y
2 , where k̆a5A \2

2m0
ka , a5x,y,z,r,1,2, and gm5(g31g2)/2,gd5(g32g2)/2. The

numerical values ofEP , EPX , EG , EGC , D, DC , andg j are given in Table III.
The strain Hamiltonian we used in the quantum well calculation with the six-band model is given in the 6-dimen

spinor basis$u1, 3
2 &,u1, 1

2 &,u1,2 1
2 &,u1,2 3

2 &,u1,1&,u1,2&% by

HS5S aV«2bV« uu' 0 0 0 0 0

0 aV«1bV« uu' 0 0 A2bV« uu' 0

0 0 aV«1bV« uu' 0 0 2A2bV« uu'

0 0 0 aV«1bV« uu' 0 0

0 A2bV« uu' 0 0 aV« 0

0 0 2A2bV« uu' 0 0 aV«

D , ~A2!

where« uu'5« i2«' , «'5«zz522(C12/C11)« i , and« i5«xx5«yy5(aSi2aSi12xGex
)/(aSi12xGex

) whereaSi andaSi12xGex
are

the lattice constants of the substrate material~Si! and the well material (Si12xGex), respectively. The deformation potenti
parameter and lattice constant are given in Table II.

APPENDIX B: THE 14-BAND HAMILTONIAN

1. 14Ã14 k"p matrix

In the basis spinor atk50 given in Table I and written in the order

G8
2 :u2, 3

2 &,u2, 1
2 &,u2,2 1

2 &,u2,2 3
2 &,G6

2 :u2,1&,u2,2&,G7
2 :u1&,u2&,

G8
1 :u1, 3

2 &,u1, 1
2 &,u1,2 1

2 &,u1,2 3
2 &,G7

1 :u1,1&,u1,2&,
165333-12
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the 14314 Hamiltonian is given by

~B1!

In the following, the indexj refers to the three indexes~1,2,3!.
n

th
e
evel
2. Off-diagonal matrix elements inside the†G8
¿ , G7

¿
‡ valence

band subspace

The off-diagonal matrix elements inside the valence ba
subspace are given by:

A85g28~2k̆z
22 k̆r

2!, AD8 5gD28 ~2k̆z
22 k̆r

2!,

B852A3g38k̆zk̆2 , BD8 52A3gD38 k̆zk̆2 ,

C85A3~gm8 k̆2
2 2gd8k̆1

2 !, CD8 5A3~gDm8 k̆2
2 2gDd8 k̆1

2 !,

with

gm8 5~g381g28!/2, gd85~g382g28!/2, gDm8 5~gD38 1gD28 !/2,

gDd8 5(gD38 2gD28 )/2.

In the 14-band model, the effect of the remote bands on
valence band is taken into account by the parameterg j8 ( j
51,2,3). While the Luttinger parametersg j contain the ef-
16533
d

e

fect of all the bands including@G8
2 , G6

2 , G7
2#, the g j8 are

related to the Luttinger parametersg j available in Table III
by the following relations:25

g185g12
EP

3EG
2

EPX

3 S 1

EG1EGC
1

1

EG1EGC1DC
D ,

g285g22
EP

6EG
1

EPX

6~EG1EGC!
,

g385g32
EP

6EG
2

EPX

6~EG1EGC!
. ~B2!

Since the spin-orbit energyD is small as compared to th
energy difference between the valence band and the far l
outside the@G8

2 ,G6
2 ,G7

2 ,G8
1 ,G7

1#, we useg j85gD j8 ~Ref.
25!.
3-13
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3. Off-diagonal matrix elements inside the†G8
À , G6

À
‡

conduction bands

We define the off-diagonal matrix elements inside t
@G8

2,G6
2# conduction bands as:

AC5g̃C2~2k̆z
22 k̆r

2!, ADC5g̃DC2~2k̆z
22 k̆r

2!,

BC52A3g̃C3k̆zk̆2 , BDC52A3g̃DC3k̆zk̆2 ,

CC5A3@ g̃C2~ k̆x
22 k̆y

2!22i g̃C3k̆xk̆y#,

CDC5A3@ g̃DC2~ k̆x
22 k̆y

2!22i g̃DC3k̆xk̆y#.

The general expression of the Luttinger-like parameterg̃C j

into the off-diagonal term inside thep-type conduction band
subspace is given by the following set of equations:25

g̃C j5g̃DC j ;

g̃C15gC11
EPX

3 S 1

EG1EGC1DC
1

1

EG1EGC1DC1D D ,

g̃C25gC22
EPX

6~EG1EGC1DC1D!
,

g̃C35gC31
EPX

6~EG1EGC1DC1D!
. ~B3!

The gC j are the Luttinger parameters for thep-type con-
duction band which includes the whole band effect on

@G8
2 , G6

2# subspace. The parametersg̃C j account for the re-
mote band effect on the@G8

2 , G6
2#p-type conduction bands

without the valence band@G8
1 , G7

1# and the conduction ban
G7

2 . In the Hamiltonian which includes off- diagonal term

in the subspace@G8
2 ,G6

2#, the g̃C j parameters are related t
thegC j parameters by the set of equations~B3!. We can note
that in semiconductors with inversion symmetry such as
and Ge, the coupling between theG7

2 and @G8
2 ,G6

2# van-
ishes. As opposed to the case of GaAs,26 the set of equations
~B3! would contain the dipolar matrix elements betweenG7

2

and @G8
2 ,G6

2#. When takinggC j50 in Eqs.~B3!, we con-
sider that the result of the whole band effect on thep-type
conduction band@G8

2 ,G6
2# is to lead to a flat band. When th

remote bands are not taken into account inside the@G8
2 ,G6

2#

band, we takeg̃C j50 in all nondiagonal terms and we tak
g̃C1521 andg̃C250 in the diagonal terms. In this way w
take the nonperturbed terms of the HamiltonianHk inside
@G8

2 ,G6
2#. While the s-type conduction band behavior

close to the free electron energy dispersion near theG point,
we do not include the remote band effect on theG7

2 band.

4. Interband matrix elements

The momentum matrix elements are defined as

P65Pk6 ,

Pz5Pkz ,
16533
e

i

PX
65PXk6 ,

PX
z 5PXkz .

HereP andPX are the interband matrix elements defined

P5
\

m0
^Supxu iX&,

PX5
\

m0
^ZCupxu iY&5

\

m0
^YCupxu iX&5

\

m0
^XCupxu iZ&.

The parametersEP and EPX are defined as EPX

5(2m0 /\2)PX
2 andEP5(2m0 /\2)P2.

We note that the inclusion of remote bands by seco
order perturbation leads to the appearance of interband
diagonal terms in second order ofk in the following
expressions:

(
i

^Suk•pu i &^ i uk•puX&
1

2 S 1

ES2Ei
1

1

EX2Ei
D

and

(
i

^XCuk•pu i &^ i uk•puX&
1

2 S 1

EXC2Ei
1

1

EX2Ei
D ,

where i is an intermediate far level at energyEi . Because
each involved function is an eigenstate of the inversion sy
metry operator of theOh group and knowing that the valenc
states have opposite parities with the firstp-type ands-type
conduction states, these interband terms are equal to ze
our case. When consideringTd crystals like GaAs, these
terms are not equal to zero but are usually omitted with
any explanation in the literature. As the remote bands ar
the most general case far in energy from the first conduc
band and valence band, one can suppose that it is very w
as compared to the interband coupling termPk. A more
detailed study concerning semiconductors without invers
symmetry would be necessary to clarify this point.

5. Diagonal matrix elements

The diagonal matrix elements are defined by:

E82
H 5E82

0 2g̃C1k̆21AC ,

E82
L 5E82

0 2g̃C1k̆22AC ,

E625E62
0 2g̃DC1k̆2,

E725E72
0 2 k̆2,

E81
H 5E81

0 2g18k̆
21A8,

E81
L 5E81

0 2g18k̆
22A8,

E715E71
0 2gD18 k̆2,
3-14
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where

E82
0 5EG1EGC1DC ,

E62
0 5EG1EGC ,

E72
0 5EG ,

E81
0 50,

E71
0 52D,

and
16533
k̆25
\2

2m0
k2.

The spin-orbit energies are defined as

D5
3\

4m0
2c2

^ iXu@“U`p#yuZ&,

DC5
3\

4m0
2c2

^ iXCu@“U`p#yuZC&.

The numerical values ofEP , EPX , EG , EGC , D, DC ,
andg j are given in Table III.
al
ich are

rix
6. Strain Hamiltonian

In the quantum well calculation, the subband dispersion was obtained from theHk
14314 Hamiltonian onto which we expand

the 838 strain HamiltonianHS and the potentialV. In the 8-dimensional spinor basis$u1&,u2&,u1, 3
2 &,u1, 1

2 &,u1,2 1
2 &,

u1,2 3
2 &,u1,1&,u1,2&% ~see Table I! the 838 HS is given by

HS51
aC« 0 0 0 0 0 0 0

0 aC« 0 0 0 0 0 0

0 0 aV«2bV« uu' 0 0 0 0 0

0 0 0 aV«1bV« uu' 0 0 A2bV« uu' 0

0 0 0 0 aV«1bV« uu' 0 0 2A2bV« uu'

0 0 0 0 0 aV«2bV« uu' 0 0

0 0 0 A2bV« uu' 0 0 aV« 0

0 0 0 0 2A2bV« uu' 0 0 aV«

2 , ~B4!

where« uu'5« i2«' , «'5«zz522(C12/C11)« i , and« i5«xx5«yy5(aSi2aSi12xGex
)/(aSi12xGex

) where aSi and aSi12xGex
are

the lattice constants of the substrate material~Si! and the well material (Si12xGex), respectively. The deformation potenti
parametersaG , bV and the lattice constants are given in Table II. Since the deformation potential parameters, wh
involved inside thep-type conduction band, are not known, we take them arbitrarily equal to zero.

APPENDIX C: THE DIPOLAR MATRIX ELEMENTS

To simplify the discussion in the text we use the standard notation HH(↑↓), LH(↑↓), and SO(↑↓) to design the spin-
degenerated heavy-holeu1,6 3

2 &, light-holeu1,6 1
2 &, and spin-orbitu1,6& states, respectively, defined in Table I. The mat

«•“kHk is derived from the 636 Hk matrix in Eq. ~A1! at kx5ky50. For light polarized parallel to the layer plane,«
5(«x ,«y,0) andkuu50:

«uu•“kHk5
\2

2m0
3S HH↑ LH↑ LH↓ HH↓ SO↑ SO↓

0 2A3g3«2k̂z 0 0 A6g3«2k̂z 0

cc 0 0 0 0 23A2g3«2k̂z

0 0 0 22A3g3«2k̂z 23A2g3«1k̂z 0

0 0 cc 0 0 A6g3«1k̂z

cc 0 cc 0 0 0

0 cc 0 cc 0 0

D , ~C1!

where«25(«x2 i«y) and«15(«x1 i«y).
For light polarized along the growth axis,«5(0,0,«z):
3-15



«z•“kHk5
\2

2m0
31

HH↑ LH↑ LH↓ HH↓ SO↑ SO↓
22~g122g2!k̂z 0 0 0 0 0

0 22~g112g2!k̂z 0 0 24A2g2k̂z 0

0 0 22~g112g2!k̂z 0 0 4A2g2k̂z

0 0 0 22~g122g2!k̂z 0 0

0 cc 0 0 22g1k̂z 0 2 .
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0 0 cc 0 0 22g1k̂z
~C2!

In both matrices the terms likeg k̂z have explicitly the form1
2 (g k̂z1 k̂zg) with k̂z52 i ]/]z.
.G
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D. Grützmacher, and E. Mu¨ller, Science290, 2277~2000!.

6J.M. Luttinger and W. Kohn, Phys. Rev.97, 869 ~1955!.
7J.M. Luttinger, Phys. Rev.102, 1030~1956!.
8E.O. Kane, J. Phys. Chem. Solids1, 249 ~1957!.
9Yia-Chung Chang and R.B. James, Phys. Rev. B39, 12 672

~1989!.
10R. People, J.C. Bean, S.K. Sputz, C.G. Bethea, and L.J. Pet

las, Thin Solid Films222, 120 ~1992!.
11S. Ridene, K. Boujdaria, H. Bouchriha, and G. Fishman, Ph

Rev. B64, 085329~2001!.
12C.R. Pidgeon and R.N. Brown, Phys. Rev.146, 575 ~1966!.
13J.R. Chelikowski and M.L. Cohen, Phys. Rev. B14, 556 ~1976!.
14N. Cavassilas, F. Aniel, K. Boujderia, and G. Fishman, Phys. R
16533
.

e,

,

o-

.

v.

B 64, 115207~2001!.
15P. Boucaud, S. Sauvage, M. Elkurdi, E. Mercier, T. Bruhnes, V

Thanh, D. Bouchier, O. Kermarrec, Y. Campidelli, and D. Be
sahel, Phys. Rev. B64, 155310~2001!.

16G.E. Pikus and G.L. Bir, Sov. Phys. Solid State1, 1502~1960!.
17M.M. Rieger and P. Vogl, Phys. Rev. B48, 14 276~1993!.
18D.J. BenDaniel and C.B. Duke, Phys. Rev.152, 683 ~1966!.
19G.A. Baraff and D. Gershoni, Phys. Rev. B43, 4011~1991!.
20G. Fishman, Phys. Rev. B52, 11 132~1995!.
21D.A. Broido and L.J. Sham, Phys. Rev. B31, 888 ~1985!.
22P. Enders, A. Ba¨rwolff, and M. Woerner, Phys. Rev. B51, 16 695

~1995!.
23A. Twardowski and C. Hermann, Phys. Rev. B35, 8144~1987!.
24M. Altarelli, U. Ekenberg, and A. Fasolino, Phys. Rev. B32, 5138

~1985!.
25K. Boujderia, S. Ridene, and G. Fishman, Phys. Rev. B63,

235302~2001!.
26P. Pfeffer and W. Zawadzki, Phys. Rev. B41, 1561~1990!.
27Semiconductor, Physics Group IV Elements and III-V Com

pounds, edited by O. Madelung, M. Shultz, and H. Weis
Landolt-Börnstein, New Series Group III, Vol. 17, Pt.
~Springer-Verlag, New York, 1982!.
3-16


