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We have investigated the band structure of tensile-strained germanium using a 30 band k ·p
formalism. This multiband formalism allows to simultaneously describe the valence and conduction
bands, including the L, �, and � valleys. We calculate the energy band variation as a function of
strain and obtain that the crossover from indirect to direct band gap occurs for a tensile in-plane
strain of 1.9%. The effective masses of density of states are deduced from the calculated conduction
and valence band density of states. Significant deviations are observed as compared to the effective
masses of density of states values of unstrained bulk germanium. We finally calculate the optical
gain that can be achieved with tensile-strained bulk germanium. An optical gain larger than
3000 cm−1 is predicted for a carrier density of 1�1018 cm−3 and a 3% in-plane biaxial strain. This
optical gain is larger than the one of GaAs calculated with the same formalism and is much larger
than the experimental free-carrier absorption losses. This gain should be sufficient to achieve lasing
in these structures. © 2010 American Institute of Physics. �doi:10.1063/1.3279307�

I. INTRODUCTION

Bulk germanium is an indirect band gap semiconductor.
However, the energy band structure is strongly dependent on
the lattice deformation. A transition from indirect to direct
band gap has been predicted for tensile-strained germanium
since the energy position of the conduction � valley versus
strain decreases more rapidly than the band-edge L valley.1,2

Uniaxial tension along the �111� direction can also lead to a
direct band gap.3 A direct band gap is of particular impor-
tance for light emission and to achieve population inversion.
Its occurrence would be very promising for the demonstra-
tion of a germanium laser and the development of germa-
nium and silicon photonics. Tensile-strained germanium can
be obtained by different techniques. A small tensile strain
�0.2%� can be introduced by growing germanium on a sili-
con substrate because of the difference in thermal expansion
coefficient between the germanium layer and the substrate.4

Optical gain has been recently evidenced in germanium at
room temperature by combining this small tensile strain with
a strong n-doping.5 The growth of Ge on GeSiSn was pro-
posed by Menendez and co-workers.6 This approach could
provide tensile strain of a few percent which might be suffi-
cient to obtain a direct band gap. A theoretical gain calcula-
tion for quantum well lasers has been developed in Ref. 7 for
this heterosystem. Growth on III-V semiconductors is also an
option.8 However, the prediction of a direct band gap, as
reported in Ref. 1, does not imply that a significant optical
gain can be achieved. One needs to take into account the
density of states beyond the parabolic dispersion in order to
accurately calculate the optical gain between valence and
conduction bands and to compare this optical gain with the
free-carrier absorption losses. The purpose of this work is to

provide the calculation of the band structure of tensile-
strained germanium and to demonstrate that high optical gain
can be achieved with this material.

We have developed a band structure calculation of
tensile-strained germanium using a 30 band k ·p formalism.
The 30 band k ·p formalism is known to provide an accurate
description of the valence and conduction bands all over the
Brillouin zone.9–11 It is therefore an appropriate formalism to
describe simultaneously the �, �, L, heavy-hole �hh�, and
light-hole �lh� bands and their dependences as a function of
strain. The band structures of strained SiGe and strained Ge
layers deposited on SiGe buffers were also calculated using a
30 band formalism in Ref. 12. Only compressively strained
germanium can be achieved in the case of strain imposed by
SiGe buffers. Here, we concentrate on the specific case of
tensile-strained germanium and on its optical properties. We
obtain that the transition from indirect to direct band gap
occurs for a tensile deformation of 1.9%. The corresponding
low-temperature energy band gap is 530 meV �2.34 �m
wavelength�. We calculate the valence and conduction den-
sity of states for unstrained and strained germanium using
the 30 band formalism. It provides the values of the effective
masses of density of states which are significantly different
from those of bulk unstrained germanium. We finally calcu-
late the interband optical gain as a function of the carrier
density and show that optical gains higher than 3000 cm−1

could be obtained for a 1�1018 cm−3 carrier density and a
3% tensile strain. These optical gains are compared to those
calculated on bulk GaAs using the same formalism.

II. 30 BAND K·P FORMALISM AND GERMANIUM
BAND STRUCTURE

A. Parametrization

The 30 band k ·p formalism was introduced following
the approach described in Refs. 9–11. The strain is taken into
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account through the Bir–Pikus Hamiltonian.13,14 A �001� bi-
axial strain has two contributions on the band structure: a
hydrostatic component which shifts the band gap energy and
a uniaxial component which splits the bands by lowering the
symmetries. The effect of strain on the energy band positions
can also be calculated through the following formulas13 us-
ing Koster’s notations for symmetry elements in the simple
group.9,15 For the indirect conduction valleys, the following
equations were first expressed in Refs. 16 and 17. For the
valence band, the strain induced shift taking into account the
spin orbit and strain splitting interaction was expressed in
Refs. 18 and 19,
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where �=�xx+�yy +�zz, �� =�xx=�yy = �a� −aGe� /aGe, ��=�zz

= �a�−aGe� /aGe, aGe being the lattice parameter of bulk ger-
manium, and a� and a� being the in-plane and out-of-plane
lattice parameters of strained germanium. For a biaxial de-
formation considered in the following, ��=−�2C12 /C11���,
where C12 and C11 are the elastic constants �49.4 and 131.5
GPa at low temperature, respectively�.20 �Ec

� and �Ec
L cor-

respond to the shift of the �2
− and L conduction bands. �E�2

and �E�4
correspond to the energy shift of the �2 and �4

conduction valleys. �Eh is the mean energy shift of the va-
lence band extrema at k=0. �Ev is the linear splitting versus
uniaxial strain between hh and lh for a null spin-orbit inter-
action. �Ev

lh corresponds to the energy shift of the lh band in
the case of a tensile strain with respect to an energy origin

taken at the lh and hh extrema without strain. It corresponds
to a mixing of lh and spin-orbit states due to strain coupling.
For simplicity, we denote it as the lh band. �Es

lh is similar to
�Ev

lh but with respect to a different energy origin, namely, the
mean energy of the three valence bands which is shifted by
−�0 /3 from the top lh and hh band extrema without strain.
�0 is the spin-orbit splitting �0.29 eV for germanium�.21 Note
that there are two main limits to the treatment of the strain
effect. First, we use a model with the elastic “constants”
considered as constants, i.e., we do not take into account the
nonlinearities of elastic constants which can be observed at
very large deformations. It is justified since the considered
deformations are only of a few percent. Second, the intro-
duction of strain in the k ·p matrix leads to nondiagonal
terms of the form Pk�1+��, where P is a matrix element. We
have neglected the terms Pk�, an approximation which is
valid as long as � is small as compared to 1. As long as there
are uncertainties on the values of the P term which can be as
large as �10% depending on semiconductors, neglecting the
Pk� terms is legitimate for � values of few percent.

The main parameters used in the k ·p calculation are
given in Table I. a�5

+ is set equal to zero since only the dif-
ference between the parameters has to be considered. Several
parameters which are introduced in the k ·p matrix have a
strong influence on the energy band positions. The notation
of the following parameters corresponds to the one used in
Ref. 11. a�2

− controls the hydrostatic dependence of the �

conduction band. It has also some influence on the position
of the L valley. b�4

− controls the splitting of the p-conduction
band and has a strong influence on the splitting of the �
valley. We have chosen the value of b�4

− equal to 	5.1 eV
because it leads to a � valley splitting which is in agreement
with the value that can be calculated from Eq. �5� and a band
potential parameter �u

� of 9.75 eV as reported by nonlocal
empirical pseudopotentials.22 This value of �u

� is consistent
with other values of �u

� reported in literature �9.42 eV in
Ref. 23, 10.2 eV in Ref. 24�. The adjustment of b�4

−, based on
the � valley splitting, is more appropriate than the adjust-
ment of this parameter from the interband band gap of SiGe
alloys, as done in Ref. 11, which led to a 	9.5 eV value for
germanium. The � valley is usually not considered when the
band gap of tensile-strained germanium is calculated. How-
ever, it is intrinsically included in the 30 band formalism. For
a compressively strained germanium layer, the � valley is
split into �4 and �2 valleys and the �4 valley represents the
minimum. The �4 valley has a weak dependence on the in-
plane strain while the �2 valley has a strong dependence on
strain. For tensile-strained germanium, it is the opposite: The
�2 valley represents the minimum and its energy strongly
decreases when the strain increases. Note that if the b�4

− pa-

TABLE I. Parameters �in eV� used in the 30 band k ·p formalism. a, b, c, and d correspond to Refs. 21, 33, 23,
and 27, respectively. According to formulas �1�–�9�, a value of b�5

+ with a minus sign must be considered while
a positive value of this parameter must be taken into account according to the notations presented in Ref. 14.

a�2
− −a�5

+ a�4
− −a�5

+ b�4
− b�5

+ ��d+ 1
3�u−a�5

+�L ��d+ 1
3�u−a�5

+�� a�1u
+ −a�5

+

	9.75 �a� 	3.9 �b� 	5.1 	2.55 �c� 	3.6 �d� 	0.9 5.3
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rameter is large �	6.8 eV and above in absolute value�, the
� valley splitting becomes important and the energy of the �
valley becomes lower than the energy of the L and � valleys.
In this case, the tensile-strained germanium cannot become a
direct band gap semiconductor.

In literature on 20 or 30 band k ·p modeling,11,25 the
strain is usually taken into account through the Bir–Pikus
Hamiltonian. This Hamiltonian only describes the strain in-
teraction between 14 bands. This restriction was mainly due
to the lack of knowledge of the strain parameters for the
other bands than the standard 14 bands. The use of a trun-
cated basis of interaction for a strain Hamiltonian did none-
theless provide a satisfactory description of the band struc-
ture since the considered strain magnitudes were weak.11,25

However, the band-edge states, especially at the Brillouin
zone edge, are significantly mixed with the other bands out-
side the 14 band bases.26 As an example, we can consider the
L valley of unstrained germanium. The L1 state at the Bril-
louin zone edge in the �111� direction, which is associated
with the L band edge, is a mixture composed of 5.4% of the
valence band states ��5

+�, 31.2% of p-conduction bands ��4
−�

and 31.4% of s-conduction band �2
−, which are the bands

usually included in the Bir–Pikus Hamiltonian when strain is
considered. However, the L1 state also has non-negligible
components, typically 18%, with the �1u

+ band which is the
second s-like conduction band. For the � state, the same
feature can be observed with �1u

+ components reaching 36%.
In the following, we argue that the introduction of the inter-
action of this �1u

+ band into the strain Hamiltonian can pro-
vide a better description of the L valley of germanium under
strain in agreement with experimental findings.

Despite the lack of knowledge for the strain potential
parameters of the high-energy bands, we can adjust these
parameters to correctly fit the L and � valley strain poten-
tials. The most important strain effect is the one which influ-
ences the L valley. An experimental value was reported in
Ref. 27 for the strain potential of the L valley �Eq. �2��
��d+ 1

3�u−a�5
+�L=−3.6 eV. This value was used in the cal-

culations of Ref. 6. We note that this hydrostatic dependence
is lower than the one of the direct band gap energy a�2

−

−a�5
+ =−9.75 eV and explains the direct band gap formation

under tensile strain. The hydrostatic potential value for the
�1u

+ band is adjusted to a�1u
+ −a�5

+ =5.3 eV in order to obtain
a good agreement between the energy shift of the conduction
L valley calculated with the k ·p formalism and the value
obtained by Eq. �2� and the value of ��d+ 1

3�u−a�5
+�L re-

ported in the experiments of Ref. 27.
We emphasize that there are two distinct ways to calcu-

late the influence of strain: formulas �1�–�9� describe the ef-
fect of strain on the energy of the bands at specific points in
the reciprocal space; the Bir–Pikus Hamiltonian introduced
in the 30 band formalism provides a description of the influ-
ence of strain on the whole band structure. Some input pa-
rameters of the k ·p formalism are adjusted in order to obtain
a good agreement between values calculated with the k ·p
formalism and energy changes estimated at specific Brillouin
zone points following formulas �1�–�9� using experimental or
theoretical deformation potentials. As shown below, a com-

parison between both methods makes sense since as the k ·p
formalism describes the interaction between all the bands, a
change in parameters might influence the position of differ-
ent bands, not only the band with the most direct link.

B. Band structure

Figure 1 shows a comparison between the bulk germa-
nium band structure and the band structure of tensile-strained
germanium. For bulk Ge, the band gap is indirect with the
minimum of the conduction band at the L valley in the �111�
direction. At low temperature, the indirect band gap energy
of Ge related to the L valley is 736 meV while the direct
band gap energy is 890 meV. Thus, there is only a relatively
small difference of 154 meV between both values. At room
temperature, the corresponding indirect hole-L and direct
hole-� band gap energies are 664 and 800 meV, respectively.
The key feature associated with the tensile strain is the dif-
ferent energy dependences versus strain of the L valley and
of the zone center � valley. Under tensile strain, the energy
of the � valley decreases more rapidly than the energy of the
L valley. This is explained by the larger strain potential for
the � valley as compared to the L valley since both valleys
shift according to Eqs. �1� and �2�. Thus, there is a transition
between the indirect and direct band gaps. This effect is il-
lustrated in Fig. 1 �bottom�, which shows the calculated band
structure for a 3% tensile strain. The minimum of the con-
duction band is at the zone center � valley, which indicates
that the material has a direct band gap. Meanwhile, the de-
generacy at zone center of the valence band is lifted and the
valence band maximum corresponds to the lh subband.

Figure 2 shows the energy dependence of the �, �2, L,
and lh extrema as a function of the in-plane biaxial strain.
The energy reference is taken at the hh-lh maximum without

FIG. 1. Low temperature bulk Ge band structure �top� and band structure of
3% in-plane tensile-strained germanium �bottom�. The dashed line high-
lights the minimum of the conduction band.
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deformation. The values are calculated at low temperature.
The symbols correspond to the band gap variations, as esti-
mated by formulas �1�–�9�. A good agreement is obtained
between the 30 band formalism and the calculations of the
band variations following formulas �1�–�9�. As shown below,
the main interest of the 30 band k ·p formalism is to provide
an accurate description of the density of states. The energy of
the conduction bands decreases as the in-plane strain is in-
creased. The striking feature is the difference in slopes be-
tween the L, �, and � valleys while the �2 valley remains at

about 70 meV above the � valley. The L valley has a weaker
dependence �	44 meV/% in-plane strain� than the � valley
�	121 meV/% in-plane strain� and a transition from indirect
to direct band gap occurs for an in-plane strain of 1.9%. This
value is in good agreement with 1.8% and 2% values re-
ported for these transitions in Refs. 2 and 4. The energy of
the lh band increases when the in-plane strain increases
while the energy of the hh band decreases. The lh band en-
ergy shift leads to an additional decrease in the energy gap.
Thus, a small tensile strain variation has a strong impact on
the band gap variation. At the crossover between indirect and
direct band gaps, the low-temperature band gap energy is
530 meV corresponding to a 2.34 �m wavelength. The
variation of the direct energy band gap as a function of strain
is also shown in Fig. 2. This variation can be interpolated
with a good approximation by a linear dependence EG���
=0.89−20��� �eV�. The band gap is predicted to reach
zero for an in-plane strain of 4.5%.

C. Effective masses

We have calculated the equienergy surfaces of the �, �,
L, and lh bands for relaxed and tensile-strained germanium
�not shown here�. The equienergy surfaces are calculated at
20 meV away from the maximum band edge. A significant
difference between these equienergy surface shapes is ob-
served when the in-plane biaxial strain is present. It indicates
that the effective mass tensor of strained germanium differs
significantly from the one of bulk Ge. We note that the ef-
fective mass tensor can be used in a simplified approach to
calculate the band structure and the optical properties, but
this approach is only valid near the band extrema. Only a
multiband calculation can provide an accurate description of
the equienergy surfaces. However, it is interesting to extract
some effective mass parameters from this modeling which
could be useful for, e.g., quantum well calculations. These
values are summarized in Table II. The calculated effective
masses of the � �0.039 m0, where m0 is the free electron
mass� and lh valleys �0.0435 m0� of bulk Ge are in good
agreement with the experimental values of 0.038 and 0.043–
0.0438 reported in Refs. 20 and 21. For the L valley, the
calculated values of 1.60 m0 for m�

L and 0.085 m0 for m�
L

FIG. 2. �Color online� �a� Energy dependence at low temperature �4 K� of
the �, �2, L, and lh extrema as a function of the in-plane biaxial strain. The
lines correspond to the results given by the k ·p formalism. The squares
correspond to the predictions given by formulas �1�–�9�. �b� Variations of the
direct band gap energy EG���=Ec���−E�lh� and of the L band gap EG�L�
=Ec�L�−E�lh�. The curves corresponding to Ec��� and Ec�L� cross for an
in-plane strain of 1.9%, which indicates the transition from indirect to direct
band gap.

TABLE II. Effective masses and effective masses of density of states corresponding to the different valleys of
relaxed and strained germanium. The “strained” part refers to 3% tensile-strained germanium. The masses are
given in units of m0. mxx, myy, and mzz correspond to the effective masses along the �100�, �010�, and �001�
directions. m� and m� correspond to effective masses parallel or perpendicular to the valley direction. For �2,
mzz=m�. For the L valley in strained germanium, m� is given for the �	110� direction; this value depends on the
considered perpendicular direction. mDOS corresponds to the values obtained by the multiband calculation by
fitting the local density of states for each valley following Eq. �11�.

Direct valleys

Relaxed Strained

mxx, myy mzz mDOS mxx, myy mzz mDOS

�c 0.039 0.039 0.039 0.03 0.015 0.025
�lh 0.0435 0.0435 0.05 0.143 0.015 0.079

Indirect valleys m� m� mzz mDOS m� m� mzz mDOS

�2 0.93 0.195 0.93 1.16 0.80 0.19 0.80 0.49
L 1.60 0.085 0.13 0.60 2.30 0.067 0.094 0.55
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are also in good agreement with the experimental values of
1.59 m0 and 0.0823 m0 reported in Refs. 20 and 21. If we
consider the z direction for strained Ge, the effective mass of
the L valley is mzz

L =0.094 m0, which is six times larger than
the zone center effective mass of the conduction band mzz

�

=0.015 m0. For the �2 valley, the effective mass along z is
mzz

�2 =m�
�2 =0.80 m0. Consequently, in presence of quantum

confinement along the z direction, as the band edge energy
differences are only 70 meV �80 meV� between �2 �L valley�
and �, a large energy quantization could change a direct
band gap material into fundamental indirect band gap quan-
tum wells.

The effective masses of density of states are critical pa-
rameters and are frequently used to estimate the threshold of
lasers.28 In a first approximation and by considering only two
directions in the case of multivalley anisotropic bands such
as the L and � valleys, we have

mDOS
L,� = ML,�

2/3 �m�
2 m��1/3, �10�

where m� and m� are the effective mass perpendicular and
parallel to the valley direction i.e. �111� for L and �001� for
�2, and M is the number of equivalent directions. ML=4 is
not changed with biaxial strain while M�=6 is changed into
M�2

=2 and M�4
=4 under biaxial strain. A better estimation

of the effective masses of density of states can be deduced
from the density of states calculated with the 30 band for-
malism. The density of states is evaluated from the band
diagram calculation in discretized k-space, which is obtained
by considering Born–Von Karman boundary conditions. The
electronic wavevector is written as eigenstates of a finite
crystal volume V, i.e., k= �2
 /L��Nx ,Ny ,Nz�, where Nx, Ny,
and Nz are integers and L3 is the crystal volume. For integra-
tion purposes, we have considered a volume of �1500 a�3,
where a is the crystal lattice parameter. The density of states
is obtained by counting the states in a small energy window.
The effective mass of density of states is then defined and
obtained by fitting the density of states integrated over all
directions with mDOS following a parabolic band law

g�E� =

2


2�3 �mDOS�3/2
E . �11�

Figure 3 shows the example of the calculated density of

states for 3% tensile-strained germanium. For relaxed and
strained germanium, the effective masses of density of states,
which are deduced from Eq. �11� and the k ·p calculation, are
presented in Table II. For L and �2 valleys, the effective
masses of density of states are consistent with the expression
mDOS

L,� given by Eq. �10� estimated with the transverse and
longitudinal masses calculated by k ·p theory �0.57 m0 for
mDOS

L and 1.08 m0 for mDOS
� �. For a 3% tensile-strained ger-

manium, the effective masses of density of states are mDOS
�

=0.025 m0, mDOS
�2 =0.49 m0, mDOS

L =0.55 m0, and mDOS
lh

=0.079 m0 for �, �2, L, and lh bands, respectively.
Despite a strong nonparabolicity of the band dispersion

for both L and �2, especially in the longitudinal direction
when strain is present, there is no significant deviation from
the parabolic law given by Eq. �11� for energies close to the
band edge within 20 meV �60� for the �2 �L� valleys. As
seen in Fig. 3, the same feature is true for the lh band for
energies within 10 meV from the band edge. There is indeed
a good overlap between the full line corresponding to the
density of states calculated from the band diagram dispersion
and the squares which are obtained from the parabolic law
given by Eq. �11� using mDOS

lh =0.079 m0. However, the de-
viation from the parabolic law becomes significant at 10
meV below the valence band edge. These deviations from
parabolic law have an impact on the calculation of the opti-
cal gain since the latter one is directly related to band filling
statistics for the material under nonequilibrium carrier injec-
tion. The deviation from the parabolic law is even more sig-
nificant for the gain calculation at very high carrier densities.

III. GAIN CALCULATION

In the following, we use the band diagram calculated
from the 30 band model to evaluate the optical gain of
strained germanium. First, we extract the joined density of
states for zone center valence and conduction bands as a
function of vertical �in k-space� optical transition energy. The
contribution of the optical indirect transitions are neglected,
but the indirect valleys are accounted for in the calculation of
the conduction quasi-Fermi levels Efc

and Efv
. We use the

density of states, as shown in Fig. 3, to evaluate Efc
and Efv

.
For the case of a 1018 cm−3 carrier density under a 3% bi-
axial strain, the conduction quasi-Fermi level is Efc
=78 meV above the direct conduction band edge instead of
128 meV when considering only the zone center band.

The optical gain of the germanium layer is calculated
from the absorption spectrum

���� = C0� j���� �ui�ε · p�uf��2
d�

4

, �12�

where C0=
e2 /cn�0m0
2. ε is the polarization of the inci-

dent light. � j��� is the joined density of states for the
conduction band and valence bands in the presence of carri-
ers. It corresponds to the density of direct transitions
at energy �. It is obtained by using the calculated
band dispersion deduced from the k ·p formalism
following � j���= �2 /V��k��Ec

��k�−Elh�k�−���fv�Elh�k��
− fc�Ec

��k���, where fv and fc are the Fermi–Dirac distribu-
tions for the valence band and the conduction band, respec-

FIG. 3. �Color online� Density of states of a 3% in-plane tensile-strained
germanium �full line�. The density of states obtained for parabolic disper-
sions and fitted effective masses of density of states as reported in Table II
�Eq. �11�� are shown with squares. The energy band gap is 320 meV. The
vertical axis is in log scale.
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tively. The quasi-Fermi levels are calculated for strained ma-
terial from the density of states following N
=�Ec

��0�
�

�c�E�fc�E�dE and P=�Elh�0�
� �v�E�fv�E�dE with N= P.

The averaged square of the interband dipolar momentum
��ui�ε ·p�uf��2�d� /4
� is calculated by using the momen-
tum matrix element of the k ·p Hamiltonian ui�ε ·p�uf�
= �m0 /��ui�ε ·�kH�uf�, where ui and uf are the zone center lh
and conduction band states. In the absorption calculation, we
use the matrix element of zone center transitions, which is, in
good approximation, weakly dependent on k in the k-space
considered range. The vertical transitions considered in the
absorption calculation involve conduction and valence band
states at k�5% of the 2
 /a Brillouin zone. The average
value of �ui�ε ·p�uf��2 is obtained by its integration over a 4

solid angle with the incident polarization ε=cos � sin �ex
+sin � sin �ey+cos �ez, where � varies between 0 and 
 and
� varies between 0 and 2
.

The calculation of the optical gain shown in Fig. 4 does
not account for broadening mechanisms. As discussed below,
these predicted values of optical gain are compared to those
of GaAs calculated with the same formalism. If we account
for the broadening, the amplitude of the optical gain will be
decreased and the amplitude of the decrease will depend on
the exact value of the broadening. More particularly, the
changes can be important when the spectral range of the gain
is of the order of the broadening, which is not expected at
high carrier densities.

Figure 4 shows the calculated gain at 4 K �top� and at 80
K �bottom� for a tensile-strained germanium with a 3% in-
plane deformation. The calculated gain is shown as a func-
tion of the interband transition energy for three different car-
rier densities �1017, 1018, and 4�1018 cm−3�. At 4 K, the
optical gain reaches a value of 3170 �3500� cm−1 at an en-
ergy of 405 �420� meV for an injected carrier density of

1018 cm−3 �4�1018 cm−3�. At 80 K, the gain reaches
2500 cm−1 for a 1018 cm−3 carrier density. Note that the
3500 cm−1 gain value calculated at 4 K only decreases to
2900 cm−1 when the Dirac delta function used in the calcu-
lation of the joined density of states is replaced by a Lorent-
zian with a 10 meV broadening. For a broadening value of
40 meV, the gain is still as large as 1900 cm−1. These gain
values are large and can be compared to the intrinsic losses
associated with free-carrier absorption. We have used the
empirical value of free-carrier absorption of Ref. 28, which
has been obtained by fitting the experimental data reported in
Refs. 29 and 30,

� = − 3.4 � 10−25N�2.25 − 3.2 � 10−25P�2.43, �13�

where N and P are the electron and hole densities in cm−3, �
is the wavelength in units of nanometer, and � is in units of
cm−1. For an energy of 405 meV, i.e., 3.06 �m wavelength,
the free-carrier absorption is around 120 cm−1 for a
1018 cm−3 carrier density. Thus, there is a significant net gain
for tensile-strained germanium at a moderate injected carrier
density. This optical gain could be used to achieve lasing in
standard ridge waveguides or using photonic crystal resona-
tors as cavities.31,32 These predicted gain values can be com-
pared to the ones predicted for bulk GaAs even if the reso-
nance wavelength differs. At low temperature, the theoretical
gain in GaAs reaches 2500 cm−1 for a 1018 cm−3 carrier
density. For this carrier density, the spectral width of the gain
is significantly smaller for GaAs �48 meV� as compared to
strained germanium �80 meV�. At 1017 cm−3, the gain is
only 250 cm−1 for GaAs whereas the gain is around
1500 cm−1 for strained germanium. This is due to the fact
that the transparency is achieved at much lower carrier den-
sity for strained germanium. First, the effective masses of
strained germanium are much smaller than for GaAs; second,
the strain lifts the degeneracy of the hole bands and the mini-
mum is given by the lh band for strained germanium. These
features reinforce the interest for strained germanium. Note
that a thorough comparison between GaAs and strained Ge
should take into account the broadening values associated
with these materials. A systematic study of the gain as a
function of broadening, temperature, and carrier density is
beyond the scope of this article.

IV. CONCLUSION

We have investigated the band structure of relaxed and
tensile-strained germanium using a 30 band k ·p formalism.
A transition from indirect to direct band gap is found to
occur for a 1.9% in-plane tensile strain. The 30 band k ·p
formalism provides an accurate description of the density of
states of the strained material. This feature is particularly
important since the dispersion relation is strongly nonpara-
bolic. We have deduced the effective masses of density of
states from the density of states obtained by the 30 band k ·p
formalism. Finally, we have calculated the optical gain that
could be achieved with tensile-strained germanium. A strong
optical gain is predicted and should be sufficient to achieve
lasing under optical or electrical injection with this material.

FIG. 4. �Color online� 4 �top� and 80 K �bottom� optical gain for a 3%
tensile-strained germanium. Three carrier densities are depicted �1017, 1018,
and 4�1018 cm−3�.
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